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General Ideas about Python





1. Basic commands in Python

This introductory chapter aims to be a general, introduction to Python. It is not destined to a
computer science audience, but rather to people whose major is not computer programming (e.g.,
people coming from the Electrical, Chemical, Mechanical Engineering world).

1.1 Let’s get it on

1.1.1 What is Python?
Python is a general-purpose programming language, built on top of C. Its main advantage (besides
its cost!) lies in its versatility. Indeed, many tasks (Machine Learning, data analysis, web, robotics,
etc.) can be easily performed due to a huge community of Python developers, which provide free
toolboxes (packages, libraries, wrappers) for all purposes.
Python is a scripting language (meaning it is slower than plain C), but due to numerous optimizations
it can run fast enough for prototyping. Even so, its advantage when compared to C is that it is very
easy to prototype.

1.1.2 Installing Python
Python is freely downloadable at the website Python.org, and exists for all platforms. It is
extremely easy to install and maintain in Mac and Linux, using standard tools (wheel and pip), but
the management under Windows is a bit more tricky. For Windows users, the use of the Anaconda
(freely available) is recommended, since it allows to create different working environments.
In order to program, we will also need an editor. For standard scripting and execution via the
console, Visual Studio Code is recommended. For live execution, Jupyter will be used all along
this book (though alternatives exist, e.g. Spyder)

1.1.3 Hello world
The following line can be save into a file (say,helloworld.py), and be executed by calling the python
interpreter (python helloworld.py). Alternatively, this line can be executed directly into Jupyter.

Python.org
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1 p r i n t ( ’ H e l l o wor ld ! ’ )

Listing 1.1: Python ”Hello World” code

1.1.4 Python caveats
• Everything is object: meaning that each variable may have several methods included in it.

The following lines, for example, replaces ’a’ with ’e’ everywhere.

1 t e x t = ’ Python i s t h a c o o l a s t ’
2 n e w _ t e x t = t e x t . r e p l a c e ( ’ a ’ , ’ e ’ )
3 p r i n t ( n e w _ t e x t )

Listing 1.2: string basic manipulation

• Everything is memory access: meaning that there is no copy of variables contrary to Matlab.

1 a = [ ’P ’ , ’ y ’ , ’ t ’ , ’ h ’ , ’ o ’ , ’ n ’ ]
2 b = a [ 3 : : ]
3 b [ 0 ] = ’A’
4 p r i n t ( a )

Listing 1.3: basic slicing

• Everything is simple: meaning that no indexations are required, for example to iterate

1 a = [ 0 , 1 , 3 . 1 4 , ’ a ’ , ’ Python ’ , [ 0 , 1 ] ]
2 f o r v a l u e i n a :
3 p r i n t ( v a l u e )

Listing 1.4: basic slicing

The overall philosophy of Python is humorously summarized inside the interpreter and denoted by
”the Zen of Python”. . .

1 Python 3 . 5 . 0 ( v3 . 5 . 0 : 3 7 4 f501f4567 , Sep 13 2015 , 0 2 : 2 7 : 3 7 ) [MSC v .1900 64 b i t (
AMD64) ] on win32

2 Type " c o p y r i g h t " , " c r e d i t s " o r " l i c e n s e ( ) " f o r more i n f o r m a t i o n .
3 >>> i m p o r t t h i s
4 The Zen of Python , by Tim P e t e r s
5

6 B e a u t i f u l i s b e t t e r t h a n ug ly .
7 E x p l i c i t i s b e t t e r t h a n i m p l i c i t .
8 Simple i s b e t t e r t h a n complex .
9 Complex i s b e t t e r t h a n c o m p l i c a t e d .

10 F l a t i s b e t t e r t h a n n e s t e d .
11 S p a r s e i s b e t t e r t h a n dense .
12 R e a d a b i l i t y c o u n t s .
13 S p e c i a l c a s e s aren ’ t s p e c i a l enough t o b r e a k t h e r u l e s .
14 Although p r a c t i c a l i t y b e a t s p u r i t y .
15 E r r o r s s h o u l d n e v e r p a s s s i l e n t l y .
16 Un le s s e x p l i c i t l y s i l e n c e d .
17 In t h e f a c e o f ambigu i ty , r e f u s e t h e t e m p t a t i o n t o g u e s s .
18 There s h o u l d be one−− and p r e f e r a b l y on ly one −−o b v i o u s way t o do i t .
19 Although t h a t way may n o t be o b v i o u s a t f i r s t u n l e s s you ’ r e Dutch .
20 Now i s b e t t e r t h a n n e v e r .
21 Although n e v e r i s o f t e n b e t t e r t h a n ∗ r i g h t ∗ now .
22 I f t h e i m p l e m e n t a t i o n i s ha rd t o e x p l a i n , i t ’ s a bad i d e a .
23 I f t h e i m p l e m e n t a t i o n i s ea sy t o e x p l a i n , i t may be a good i d e a .
24 Namespaces a r e one honking g r e a t i d e a −− l e t ’ s do more o f t h o s e !
25 >>>

Listing 1.5: Python philosophy



1.2 Variable types 11

1.2 Variable types

Similarly to C, Python is typed, meaning that each variable has an associated type. We review here
the most commonly used types (warning: comparing variables with different types may results in
an error)

1.2.1 Simple types
Name Type Possible values examples
bool Boolean value True, False
int Integer of unlimited magnitude 42

float Floating point number, system-defined precision 3.1415927
str A character string ’hello’, """Spanning multiple lines"""

1.2.2 Complex types
Name Type Possible values examples
dict dictionary of key and value pairs; can contain mixed types 1 { ’ key1 ’ : 1 . 0 , 3 : F a l s e }

list list, can contain mixed types 1 [ 4 . 0 , ’ s t r i n g ’ , True ]

tuple unchangable list 1 ( 4 . 0 , ’ s t r i n g ’ , True )

1.3 Conditional programming

Several times, you wish to run some lines of codes if a specific condition holds, or a certain amount
of times only, or until a certain condition is met but it is difficult to know when exactly. As most
programming languages, Python has this covered.
Python supports the usual logical conditions from mathematics:
• Equals:

1 a == b

• Differs:

1 a != b

• Lesser (or equal) than:

1 a < b
2 a <= b

• Greater (or equal) than:

1 a > b
2 a >= b

Python relies on indentation, using whitespace, to define scope in the code. Other programming
languages often use curly-brackets for this purpose, but this approach forces the programer to be
organized and to produce readable codes. For example, the follow code will not work, because
indentations (when entering inside the function code and loops) are missing:

1 d e f t e s t _ g r e a t e r ( a =14 , b =3) :
2 i f b > a :
3 p r i n t ( ’ b i s g r e a t e r t h a n a ’ )
4 e l s e :
5 p r i n t ( ’ b i s s m a l l e r t h a n a o r e q u a l s t o a ’ )

Listing 1.6: Code with a bug: indentation is missing

The correct code should be as follows:
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1 d e f t e s t _ g r e a t e r ( a =14 , b =3) :
2 i f b > a :
3 p r i n t ( ’ b i s g r e a t e r t h a n a ’ )
4 e l s e :
5 p r i n t ( ’ b i s s m a l l e r t h a n a o r e q u a l s t o a ’ )

Listing 1.7: Corrected code

1.3.1 If . . . else . . . statements
The ”if. . . else. . . ” statement can be used to execute different parts of code whether a certain
condition is verified or not. For example, the following code check whether two lists have a similar
length or not:

1 a = [ 1 , 2 , 3 , 4 ]
2 b = [ ’Tom ’ , ’ K f i r ’ , ’ I r i t ’ , ’Guy ’ , ’ Amir ’ ]
3 i f l e n ( a ) == l e n ( b ) :
4 p r i n t ( ’ {} and {} have same l e n g t h ’ . f o r m a t ( ’ a ’ , ’ b ’ ) )
5 e l s e :
6 p r i n t ( ’ {} and {} have n o t t h e same l e n g t h ’ . f o r m a t ( ’ a ’ , ’ b ’ ) )

Listing 1.8: Example of if statement

1.3.2 For statements
A for loop is used for iterating over a sequence (that is either a list, a tuple, a dictionary, a set, or a
string). It works as an iterator as in C++. With the for loop we can execute a set of statements, once
for each item in a list, tuple, set etc. Iterations can be controlled by the two following keywords:
• break: will stop the for loop and continue the program after the loop
• continue: will stop the current iteration inside the for loop and will jump to the next iteration.

Loops can be nested into other loops, similarly to other languages. However, when iterating over
objects of similar sizes, you should consider the use of zip as an alternative.

1 marke t = [ ’ a p p l e ’ , ’ p e a r ’ , ’ banana ’ , ’ a p p l e ’ , ’ p i n e a p p l e ’ , ’ banana ’ , ’ c o c o n u t ’ , ’
banana ’ , ’ s t r a w b e r r y ’ , ’ banana ’ ]

2 b a s k e t = [ ]
3 f o r f r u i t i n marke t :
4 i f f r u i t == ’ banana ’ :
5 p r i n t ( ’ I don t l i k e bananas ! ’ )
6 c o n t i n u e
7 i f l e n ( b a s k e t ) ==5:
8 p r i n t ( ’ I don t want t o e a t t o much ! ’ )
9 b r e a k

10 b a s k e t . append ( f r u i t )
11

12 p r i n t ( ’ I have {} f r u i t s i n my b a s k e t , and h e r e t h e y a r e : {} ’ . f o r m a t ( l e n ( b a s k e t )
, b a s k e t ) )

Listing 1.9: Look at the following code: how many fruits do you have at the end of the loop in your basket?

1.3.3 While statements
With the while loop we can execute a set of statements as long as a condition is true. Similarly to
the for, we can control the loop with ”break” and ”continue”.

1 marke t = [ ’ a p p l e ’ , ’ p e a r ’ , ’ banana ’ , ’ a p p l e ’ , ’ p i n e a p p l e ’ , ’ banana ’ , ’ c o c o n u t ’ , ’
banana ’ , ’ s t r a w b e r r y ’ , ’ banana ’ ]

2 b a s k e t = [ ]
3 n=0
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4 w h i l e l e n ( b a s k e t ) ! = 3 :
5 f r u i t = marke t [ n ]
6 n += 1
7 i f f r u i t i n [ ’ banana ’ , ’ a p p l e ’ ] :
8 p r i n t ( ’ I don t l i k e bananas , o r a p p l e s ! ’ )
9 c o n t i n u e

10 b a s k e t . append ( f r u i t )
11

12 p r i n t ( ’ I have {} f r u i t s i n my b a s k e t , and h e r e t h e y a r e : {} ’ . f o r m a t ( l e n ( b a s k e t )
, b a s k e t ) )

Listing 1.10: Look at the following code: how many fruits do you have at the end of the loop in your basket?

1.4 Functions in Python
Functions are an important part of modularity in computer programming. It allows to encapsulate
parts of a program in a separate function, which will be called later. The generic syntax for a
function is

1 d e f my_func t i on ( param_1 , param_2 , o p t i o n a l _ p a r a m =1 , o p t i o n a l _ p a r a m _ 2 = ’ yes ’ ) :
2 ’ ’ ’
3 Thi s f u n c t i o n does . . .
4 ’ ’ ’
5 # Code goes h e r e
6

7 r e t u r n o u t p u t # o p t i o n a l , s i n c e r e f e r e n c i n g i s OK

Listing 1.11: Function syntax

In this syntax, parameters whose values are not specified are mandatory, whereas the other are
optional (values will be passed on based on the definition).
Functions are very important to get a readable code. Very. When saving a set of functions in a
separate file or module (say, my_module.py), the functions can be there loaded all or separately:

1 # w i l l i m p o r t a l l t h e f u n c t i o n s a t once
2 i m p o r t my_module
3 # w i l l i m p o r t on ly one f u n c t i o n from t h e module
4 from my_module i m p o r t t h i s _ f u n c t i o n

Listing 1.12: Importing functions

It is also possible to define small, anonymous functions, when we need this function locally or to
define a series of parametric function:

1 # t h e lambda f u n c t i o n
2 d e f m y _ p a r a m e t r i c _ f u n c t i o n ( a ) :
3 r e t u r n lambda x : x + a
4

5 # d e f i n i n g a s e r i e s o f f u n c t i o n s
6 f1 = m y _ p a r a m e t r i c _ f u n c t i o n ( 1 )
7 f2 = m y _ p a r a m e t r i c _ f u n c t i o n ( 2 )
8

9 p r i n t ( f1 ( 3 ) )
10 p r i n t ( f2 ( 3 ) )

Listing 1.13: Lambda functions

1.4.1 A final word of advice
The author of this booklet (an avid user of Matlab) often hears in his classroom the following
question:
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”Why don’t you teach Python instead of Matlab?”
To the author’s point of view, this question makes little sense. Both are nice, easy to learn, scripting
language. Python is extremely developed in several fields of computer science and machine learning,
and lacks the nice model-based programming capabilities and stability of Matlab. Similarly, Python
handles data in a much nicer way than Matlab, but involves usually a longer trial and error cycle
in order to use freely available codes. On the other hand, we cannot ignore the economic aspects
(most startups in Israel develop in Python due to the cost of the Matlab license, while big companies
tend to use Matlab for its stability). Therefore, my very humble opinion in the matter is that a good
engineer show know both, because he never know where he will eventually land.

1.5 Case study: playing Tic-Tac-Toe
Though it seems trivial, programming a tic-tac-toe is a great wrapping up example: it goes over
basic programming, and forces to decompose the algorithm into small parts, making it easy to
address. Though we could push the example further (e.g. by adding a GUI), let us focus only on a
small text application.

1.5.1 Block diagram
A typical turn in the game goes like this:

1. the player whose turn it is chooses a box in the 3×3 grid.
2. if the chosen box does not exist or is occupied, we go back to step 1.
3. if the chosen box exists and is free, we put either an ’X’ or ’O’ (depending on the player).
4. if there are three ’X’ or ’O’ in a row, a column or in diagonals, the current player wins. The

game ends here.
5. if no one wins but all the boxes are occupied, this is a draw; the game ends here.
6. otherwise, the next player goes over the same procedure.

1.5.2 The code

1 d e f t i c _ t a c _ t o e ( ) :
2

3 game_board = [ [ ’ ’ , ’ ’ , ’ ’ ] , [ ’ ’ , ’ ’ , ’ ’ ] , [ ’ ’ , ’ ’ , ’ ’ ] ]
4 end_game = F a l s e
5 symbols =[ ’X’ , ’O’ ]
6 p l a y e r = 0
7 d i s p l a y _ b o a r d ( game_board )
8

9 f o r n i n r a n g e ( 1 0 0 ) :
10

11 i f end_game i s True :
12 b r e a k
13

14 box = r a w _ i n p u t ( ’ P l a y e r {} , e n t e r your move ( A1 , C2 , e t c . . . ) ’ . f o r m a t (
p l a y e r +1) )

15

16 ( i s _ f r e e , b a d _ l o c a t i o n ) = c h e c k _ i f _ f r e e ( game_board , box )
17

18 i f i s _ f r e e and n o t b a d _ l o c a t i o n :
19 u p d a t e _ b o a r d ( game_board , box , symbols [ p l a y e r ] )
20 i f c u r r e n t _ p l a y e r _ w i n s ( game_board ) :
21 d i s p l a y _ b o a r d ( game_board )
22 p r i n t ( ’ P l a y e r {} wins ! C o n g r a t s ! ’ . f o r m a t ( p l a y e r +1) )
23 end_game = True
24 c o n t i n u e
25 p l a y e r = ( p l a y e r + 1) % 2
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26

27

28 i f n o t i s _ f r e e :
29 p r i n t ( ’ P l a c e a l r e a d y t a k e n ! Again ! ’ )
30 c o n t i n u e
31

32 i f b a d _ l o c a t i o n :
33 p r i n t ( ’ Not i n t h e boa rd ! Again ! ’ )
34 c o n t i n u e
35

36

37 i f check_draw ( game_board ) :
38 p r i n t ( ’Draw game ’ )
39 end_game = True
40

41 d i s p l a y _ b o a r d ( game_board )

Listing 1.14: Main function

1 d e f d i s p l a y _ b o a r d ( L ) :
2 " " " D i s p l a y s t h e boa rd as i t i s now " " "
3 p r i n t ( ’ A B C ’ )
4 f o r count , row i n enumera t e ( L ) :
5 p r i n t ( " {} {} " . f o r m a t ( count , row ) )

Listing 1.15: Displays the board in ASCII

1 d e f c h e c k _ i f _ f r e e ( L , box ) :
2

3 r e t u r n _ v a l u e = F a l s e
4 b a d _ l o c a t i o n = F a l s e
5

6 i f box [ 0 ] n o t i n [ ’A’ , ’B ’ , ’C ’ ] :
7 b a d _ l o c a t i o n =True
8 r e t u r n ( r e t u r n _ v a l u e , b a d _ l o c a t i o n )
9

10 i f i n t ( box [ 1 ] ) n o t i n [ 0 , 1 , 2 ] :
11 b a d _ l o c a t i o n = True
12 r e t u r n ( r e t u r n _ v a l u e , b a d _ l o c a t i o n )
13

14 i d x = [ ’A’ , ’B ’ , ’C ’ ] . i n d e x ( box [ 0 ] )
15

16 i f L [ i n t ( box [ 1 ] ) ] [ i d x ] == ’ ’ :
17 r e t u r n _ v a l u e = True
18 r e t u r n ( r e t u r n _ v a l u e , b a d _ l o c a t i o n )
19

20 d e f u p d a t e _ b o a r d ( L , box , symbol ) :
21 i dx2 = [ ’A’ , ’B ’ , ’C ’ ] . i n d e x ( box [ 0 ] )
22 i dx1 = i n t ( box [ 1 ] )
23 L [ idx1 ] [ i dx2 ] = symbol

Listing 1.16: Checks if a box is free and update the game board

1 d e f c u r r e n t _ p l a y e r _ w i n s ( L ) :
2 w i n n i n g _ c o m b i n a t i o n s = [ ’XXX’ , ’OOO’ ]
3 s t a t e s =[ r [ 0 ] + r [ 1 ] + r [ 2 ] f o r r i n L ] + [ L [ 0 ] [ k ]+L [ 1 ] [ k ]+L [ 2 ] [ k ] f o r k i n

r a n g e ( 3 ) ] + [ L [ 0 ] [ 0 ] + L [ 1 ] [ 1 ] + L [ 2 ] [ 2 ] ] + [ L [ 2 ] [ 0 ] + L [ 1 ] [ 1 ] + L [ 0 ] [ 2 ] ]
4

5 win = F a l s e
6 i f ’XXX’ i n s t a t e s :
7 win = True
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8 i f ’OOO’ i n s t a t e s :
9 win = True

10

11 r e t u r n win
12

13 c u r r e n t _ p l a y e r _ w i n s ( game_board )
14

15 d e f check_draw ( L ) :
16 t a b l e = L [ 0 ] + L [ 1 ] + L [ 2 ]
17 r e s u l t = 9
18 i s _ d r a w = F a l s e
19 f o r x i n t a b l e :
20 i f x == ’ ’ :
21 r e s u l t −= 1
22 i f r e s u l t == 9 :
23 i s _ d r a w = True
24 r e t u r n i s _ d r a w

Listing 1.17: Functions which checks if there is a win or a draw

1.6 References
There are many references for Python programming
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2. Linear Algebra using Numpy

2.1 Reach Out, I’ll be There
Linear algebra is a field of mathematics which is encountered in all the fields of engineering.
Among many uses, we can quote:

1. Modeling stress on materials in civil engineering,
2. Analyzing linear circuits using state-space models in electrical engineering,
3. modeling degrees of freedom for solids in mechanical engineering,
4. solving numerically differential equations
5. linear algebra is also an inherent part of most modern machine learning algorithms

The package numpy includes numerous functions to perform matrix and array manipulations,
similarly to Matlab. This package is usually called as follows:

1 i m p o r t numpy as np

Listing 2.1: Calling the numpy package

Calling the package np is not mandatory; however, most developers use this convention, so to write
code compliant to other libraries we strongly recommend to use the same convention as well.
For a more intuitive use of arrays similar to Microsoft Excel worksheets, the use of Pandas is also a
nice alternative. It may be called as

1 i m p o r t pandas as pd

Listing 2.2: Calling the pandas package

2.2 Return on Linear Algebra
This chapter will present a short reminder on standard linear algebra operations. Besides the
technical aspects of these operations, and their Python implementation, it is also important to
understand the motivation for such operations.
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Definition 2.2.1 A vector space is a set V of elements (the vectors) associated with a set of
numbers K (usually R or C) such that the following calculation rules are true:
• for all u,v ∈V , u+λv
• u+0 = u (there exists a null element)
• λ (x+y) = λx+λy
• (λ +µ)x = λx+µx
• λ (µx) = (λ µ)x

As understood, the formal definition is very generic, and any space equipped with conveniently set
calculation rules can be considered as a vector. Moreover, it is often of interest to equip this vector
space of an inner product, this to quantify numerically how similar two vectors look like. A norm
is usually induced from this inner product.1

2.2.1 Matrices and Linear Applications
Definition 2.2.2 — Linear mapping. A linear application is an application from one vector
space (say, E) to another vector space (say, F), such that the following properties hold:

1. f (u+v) = f (u)+ f (v)
2. f (αu) = α f (u) for all u ∈ E,α ∈ K

This definition is general, and holds for any vector space. However, when both E and F have a
finite dimension, the definition of a linear application can be summarized by means of an array of
number, as seen below.
Loosely speaking, assuming that E has a finite dimension means that each vector x ∈ E can be
written as a unique linear combination of a finite family of vectors ei, i = 1 . . .n, that we will call a
basis:

x =
n

∑
k=1

λkek.

For example, it is common to represent a point in our three dimensional world as three coordinates
(and the uniqueness of these coordinates is the cornerstone of GPS positioning). There, we shall say
that E = R3 is a vector space with dimension dim E = 3. It also means there is a duality between a
vector space with finite dimension and a defining basis2

Now, we will consider a linear application f from E to F , and that both E and F are vector spaces
with finite dimension (not necessarily equal). We will also define ei, i = 1 . . .n and f j, j = 1 . . .m
bases associated with E and F , respectively. Since bases define all the vectors in E and F , it
is sufficient to known f (ei), i = 1 . . .n to fully characterize the application f . Thus, we can
characterize the linear application as

f (e j) =
m

∑
i=1

ai jfi,

and it is therefore convenient to summarize a linear application in an array of numbers, called
matrix:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . .
...

am1 am2 . . . amn

 , (2.2.1)

1We do not aim in this chapter to make an exhaustive presentation of linear algebra: numerous - well-known -
textbooks exist in the matter, and this incomplete presentation could appear plain stupid in comparison. However, not
understanding the basic significance of the objects we manipulate at a daily basis is also plain stupid.

2Note that there is in fact an infinite number of bases which can characterize the same vector space. This is the
underlying justification for dimensionality reduction in statistics.
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where in (2.2.1) the first column includes the decomposition of f (e1) in F , the second column
includes the decomposition of f (e2) and so forth. Consequently, the rules of matrix calculations
are induced by their very construction:
• Matrices can be added only if they have the same dimension (since we can only add linear

applications on the same vector spaces)
• Matrix multiplication follow the rules of applications’ composition, since ABx = fA( fB(x))
• Matrix multiplication is not commutative
• and so forth. Matrix calculus rules are not ”magic”, they follow the rules of use of linear

applications.
As an example, the following code performs the following operation:

[
1 0 0
0 1 0

] 1
2
3


1

2 i m p o r t numpy as np
3 i m p o r t p p r i n t # n i c e p r i n t o f a r r a y s
4

5 # one p r o j e c t i o n m a t r i x on t h e p l a n e z=0
6 A = np . z e r o s ( ( 2 , 3 ) )
7 A[ 0 , 0 ] = 1
8 A[ 1 , 1 ] = 1
9 p p r i n t . p p r i n t (A)

10

11 # we p r o j e c t t h e v e c t o r x = [1 2 3 ]^T , and compute Ax
12 x = np . z e r o s ( ( 3 , 1 ) )
13 x [ 0 ] = 1
14 x [ 1 ] = 2
15 x [ 2 ] = 3
16 y = A. d o t ( x )
17 p p r i n t . p p r i n t ( y )

Listing 2.3: matrix vector multiplication

2.2.2 Standard Matrix Operations
The following operations can be performed on matrices (and it is always a good idea to remember
the linear applications associated):
• Addition/subtraction: A+B represent the addition of two linear applications ( fA+ fB) applied

on the same vector spaces, and we get:

A+B

=


a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . .
...

am1 am2 . . . amn

+


b11 b12 . . . b1n

b21 b22 . . . b2n
...

... . . .
...

bm1 bm2 . . . bmn



=


a11 +b11 a12 +b12 . . . a1n +b1n

a21 +b21 a22 +b22 . . . a2n +b2n
...

... . . .
...

am1 +bm1 am2 +bm2 . . . amn +bmn

 ,
This operation can be done in Python using the regular + operations on Numpy arrays.
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• Multiplication: AB represents the composition of two linear applications fA( fB(· · ·)):

AB

=


a11 a12 . . . a1m

a21 a22 . . . a2m
...

... . . .
...

aq1 aq2 . . . aqm

 .


b11 b12 . . . b1n

b21 b22 . . . b2n
...

... . . .
...

bm1 bm2 . . . bmn



=


∑

m
i=1 a1ibi1 ∑

m
i=1 a1ibi2 . . . ∑

m
i=1 a1ibin

∑
m
i=1 a2ibi1 ∑

m
i=1 a2ibi2 . . . ∑

m
i=1 a2ibin

...
... . . .

...
∑

m
i=1 aqibi1 ∑

m
i=1 aqibi2 . . . ∑

m
i=1 aqibin

 ,
• Homogeneity: λA represents the composition of two linear applications λ fA

• Transposition: AT represents the adjoint operator of A
A Python summary of the previously described operation is presented below:

1 i m p o r t numpy as np
2 i m p o r t p p r i n t
3

4 A = np . z e r o s ( ( 2 , 3 ) )
5 A[ 0 , 0 ] = 1
6 A[ 1 , 1 ] = 1
7

8 B = A. copy ( )
9 C=A+B

10 p p r i n t . p p r i n t (C)

Listing 2.4: standard operations

2.2.3 Advanced Common Operations in Engineering
Common linear algebra operations are the cornerstone of numerous engineering applications. In the
field of electrical engineering, convolutions can be computed by multiplying a vector defining the
input signal by a Toeplitz matrix characterizing the impulse response of the filter. Linear systems
can be easily solved by multiplying (when possible) the solution vector by the inverse of the matrix
defining the system’s coefficients. The next chapter details one fundamental use of linear algebra:
finding a good, compact way to represent complex data.

2.3 Numpy for matrix manipulations
2.3.1 Basic uses of numpy

numpy includes by its several useful submodules including functions for matrix creation, computa-
tions and handling. The most commonly known and used submodules are:
• linalg: a submodule of linear algebra routines to solve linear systems, invert matrices,

compute eigenvalues and eigenvectors, perform matrix decompositions, and so forth.
• random: a submodule for generation of random variable samples based on probability

density functions or probability mass functions.
• fft: a submodule for Fast Fourier Transform and related operations

Further documentation can be found on the numpy website, which works in a similar manner than
Matlab’s help online, and includes numerous examples. It is also worth mentioning the companion
module scipy, which includes more advanced routines of linear algebra, optimization and advanced
algorithms for scientific computing.
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2.3.2 Plotting Results using Matplotlib

One of the best functionalities of Matlab is the easy way to plot results stored in arrays or matrices.
Python offers similar tools, using the matplotlib package for plotting, and the seaborn package for
statistical data representation (which will be detailed in a further chapter). Options in matplotlib
are similar to Matlab, such that the learning curve from one language to the other is not steep.

The following example show how to display different types of curves using Matplotlib (note that
there are many, many more)

1 i m p o r t numpy as np
2 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
3

4 d e f e x a m p l e _ p l o t s _ m a t p l o t l i b ( ) :
5 t = np . l i n s p a c e ( 0 , 4∗ np . pi , 1 0 0 0 )
6 f = np . s i n (2∗ t ) # one s i n e
7 g = np . s i n ( t ) ∗ np . exp(− t / 5 ) # a n o t h e r s i n e f u n c t i o n , damped
8 h = np . s i n ( t ) + 0 . 1∗ np . random . randn ( t . shape [ 0 ] ) # a n o i s y s i n e
9

10 f i g = p l t . f i g u r e ( num=1 , f i g s i z e = ( 2 0 , 1 0 ) )
11 p l t . s u b p l o t ( 2 , 2 , 1 )
12 p l t . p l o t ( t , f )
13 p l t . x l a b e l ( ’ t ’ )
14 p l t . y l a b e l ( ’ s i n (2 t ) ’ )
15 p l t . s u b p l o t ( 2 , 2 , 2 )
16 p l t . p l o t ( t , g , ’ r−−’ , l i n e w i d t h =3)
17 p l t . x l a b e l ( ’ t ’ )
18 p l t . y l a b e l ( ’Damped s i n e ’ )
19 p l t . s u b p l o t ( 2 , 2 , 3 )
20 p l t . p l o t ( t , h , ’ . ’ )
21 p l t . p l o t ( t , np . s i n ( t ) , l i n e w i d t h =2)
22 p l t . x l a b e l ( ’ t ’ )
23 p l t . y l a b e l ( ’ Noisy d a t a and i d e a l c u r v e ’ )
24 p l t . s u b p l o t ( 2 , 2 , 4 )
25 p l t . h i s t ( h , 5 0 , ( −1 . 3 , 1 . 3 ) ) p l t . s a v e f i g ( ’ o u t p u t . pdf ’ , f o r m a t = ’ pdf ’ )
26 p l t . show ( )

Listing 2.5: Code to plot some graphs and histograms

Figures obtained after execution of the function are presented in figure 2.3.1.

2.3.3 Basic example: Filtering with a Toeplitz Matrix

Let us assume that we consider one finite-length signal x[n] = [x0 x1 . . .xN−1]
T of size N, and one

finite length impulse response of a digital filter h[n] = [h0 h1 . . .hM−1]
T of size M. The output of

the digital filter is given by the discrete convolution between x[n] and h[n]:

y[n] =
∞

∑
k=−∞

h[k]x[n− k]
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Figure 2.3.1: Examples of figures obtained using matplotlib

Since both h and x have finite length, the convolution can indeed be summarized by a matrix-vector
multiplication:

y[n] =



h0 0 0 . . . 0 0
h1 h0 0 . . . 0 0
h2 h1 h0 0 . . . 0
...

...
...

...
...

...
hM−1 hM−2 hM−3 . . . h1 h0

0 hM−1 hM−2 hM−3 . . . h1
0 0 hM−1 . . . h3 h2
...

...
...

...
...

...
0 0 0 . . . . . . hM−1





x0
x1
...
...
...

xN−1


(2.3.1)

The following code is the implementation of Equation (2.3.1)
1 i m p o r t numpy as np
2 from s c i p y i m p o r t l i n a l g
3 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
4

5 h = np . a r a n g e ( 1 , 6 )
6 x = np . ones ( ( 5 , 1 ) )
7

8 padd ing = np . z e r o s ( h . shape [ 0 ] − 1 , h . d t y p e )
9 f i r s t _ c o l = np . r_ [ h , padd ing ]
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10 f i r s t _ r o w = np . r_ [ h [ 0 ] , padd ing ]
11

12 H = l i n a l g . t o e p l i t z ( f i r s t _ c o l , f i r s t _ r o w )
13

14 y = np . d o t (H, x )
15 p r i n t y
16

17 f i g = p l t . f i g u r e ( f i g s i z e = ( 2 0 , 1 0 ) )
18 p l t . s u b p l o t ( 1 , 3 , 1 )
19 p l t . s tem ( x )
20 p l t . y l a b e l ( ’ x [ n ] ’ )
21 p l t . x l a b e l ( ’ n ’ )
22 p l t . s u b p l o t ( 1 , 3 , 2 )
23 p l t . s tem ( h )
24 p l t . y l a b e l ( ’ h [ n ] ’ )
25 p l t . x l a b e l ( ’ n ’ )
26 p l t . s u b p l o t ( 1 , 3 , 3 )
27 p l t . s tem ( y )
28 p l t . y l a b e l ( ’ y [ n ] = h ∗ x [ n ] ’ )
29 p l t . x l a b e l ( ’ n ’ )
30 p l t . s a v e f i g ( ’ c h 2 _ c o n v o l u t i o n _ e x a m p l e . png ’ )
31 p l t . show ( )

Listing 2.6: Code performing the convolution between x and h

Figure 2.3.2: Graphs obtained by running the convolution script

2.4 Case study: an application of the Kalman filter
Kalman filtering was one of the most common linear filter used in the electrical engineering
community. It was proved to be optimal when the investigated system is linear and the noise can be
modeled as Gaussian.

2.4.1 State-space model representation of a dynamic system
When looking at a dynamic system, we can characterize it by different kinds of views: its inner
state (meaning, how the system reacts when put in a known state and let to evolve freely), and its
outer state (how it reacts when applying it a known input). All in all, a dynamic system’s behavior
is based on the evolution of its inner state and its outer state, jointly. A state-space model is a
mathematical model used to describe the behavior of a dynamic system, based on an intern state
and observations based on the current state and an input.
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The state-space model investigated as part of the Kalman filter is described below:

xn = Fnxn−1 +Bnun +wn

yn = Hnxn +vn

when it is assumed that Fn,Bn,un,Hn, wn ∼N (0,Qn) and vn ∼N (0,Rn).
The objective is to estimate xn based on yn.

2.4.2 Kalman equations
We will define xn|n as the estimate of xn, based on the knowledge of yk,k = 1 . . .n. The objective
if to find the estimator which minimizes the mean squared error E((xn− xn|n)2). The Kalman
algorithm solves the computation of the estimate iteratively. One iteration is based on two steps:
prediction and smoothing.
Prediction: The natural way to guess the state in the next time is to apply the formula to what was
obtained in the previous stage:

xn|n−1 = Fnxn−1|n−1 +Bnun

When doing so, we make an error whose covariance matrix is given by:

Pn|n−1 = E((xn−xn|n−1)(xn−xn|n−1)
T )

= E((Fnxn−1 +wn−Fnxn−1|n−1)(Fnxn−1 +wn−Fnxn−1|n−1)
T )

= FnE(xn−1−xn−1|n−1)(xn−1−xn−1|n−1)
T )FT

n +Qn

= FnPn−1|n−1FT
n +Qn

Smoothing: we define the innovation as the difference between an estimated observation and its
actual value:

In = yn−Hnxn|n−1

The covariance matgrix of the innovation is:

Sn = HnPn|n−1HT
n +Rn

The state estimate can be defined as a function of the innovation, as follows:

xn|n = xn|n−1 +KnIn

The objective is now to find the value of Kn which minimizes the error

E[‖xn|n−x‖2
2] = E[(xn|n−xn)

T (xn|n−xn)] = E[Tr((xn|n−xn)(xn|n−xn)
T )] (2.4.1)

We now need to derive (2.4.1), and check when the derivative equals zero (as a function of
(xn|n−xn)(xn|n−xn)

T ):

(xn|n−xn)(xn|n−xn)
T = (xn|n−1−Kn(yn−Hnxn|n−1)−xn)(xn|n−1−Kn(yn−Hnxn|n−1)−xn)

T

= (I−KnHn)(xn−xn|n−1)+Knvn)(I−KnHn)(xn−xn|n−1)+Knvn)
T

= (I−KnHn)Pn|n−1(I−KnHn)
T +KnRnKT

n

= KnSnKT
n +Pn|n−1−KnHnPn|n−1−Pn|n−1HT

n KT
n
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and we look for Kn such as

∂Tr((xn|n−xn)(xn|n−xn)
T )

∂Kn
= Tr

(
∂ (xn|n−xn)(xn|n−xn)

T

∂Kn

)
= 0

We define the functional f : Kn 7→KnSnKT
n +Pn|n−1−KnHnPn|n−1−Pn|n−1HT

n KT
n and will com-

pute its derivative based on its variations:

f (Kn +δKn)− f (Kn) = KnSnδKT
n +δKnSnKT

n +δKnSnδKT
n

−δKnHnPn|n−1−Pn|n−1HT
n δKT

n

Thus, f ′(Kn) = KnSn +SnKT
n −HnPn|n−1−Pn|n−1HT

n , and due to the identities Tr(A) = Tr(AT ),
Pn|n−1 = PT

n|n−1, Sn = ST
n , we obtain

Tr( f ′(Kn)) = 2Tr(KnSn)−2Tr(HnPn|n−1) (2.4.2)

Equation (2.4.2) equals zero when

Kn = Pn|n−1HT
n S−1

n (2.4.3)

Once we found (2.4.3), it is easy to compute the covariance matrix of the smoothing

Pn|n = (I−KnHn)Pn|n−1

and the error made on the observation

yn|n = yn−Hnxn|n

2.4.3 Implementation
As an example of the Kalman filter, we shall use it to track a moving object automatically in a
movie. In this framework, we will define the state as xn = [xn;yn; ẋn; ẏn], the position of the center
of mass of the object in the image n of the movie. If assuming that the acceleration is constant in
the whole movie, we can define

xn

yn

ẋn

ẏn

=


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1




xn−1
yn−1
ẋn−1
ẏn−1

+


∆t2

2
∆t2

2
∆t
∆t

a+wn, Qn ∝


∆t4

4 0 ∆t3

2 0
0 ∆t4

4 0 ∆t3

2
∆t3

2 0 ∆t2 0
0 ∆t3

2 0 ∆t2



[
xn

yn

]
=

[
1 0 0 0
0 1 0 0

]
·


xn

yn

ẋn

ẏn

+vn, Rn =

[
σ2

x 0
0 σ2

y

]

Eventually, it turns out that both step of prediction and update are iterated matrix computations
which can be efficiently implemented using Numpy capabilities, as follows:

1 d e f r u n _ k a l m a n _ f i l t e r i n g ( fo lde r_name , x , y , s t a r t _ f r a m e , end_f rame ) :
2

3 # o p t i o n s t o p l a y wi th
4 d t = 1 # s a m p l i n g r a t e
5 S_frame = 10 # s t a r t i n g f rame
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6 u = . 0 5 # d e f i n e a c c e l e r a t i o n magn i tude
7 Q = np . a r r a y ( [ [ x [ 0 ] ] , [ y [ 0 ] ] , [ 0 ] , [ 0 ] ] ) # i n i t i a l s t a t e
8 Q _ e s t i m a t e = Q. copy ( ) # e s t i m a t e o f i n i t i a l l o c a t i o n e s t i m a t i o n o f where

t h e hexbug
9 HexAccel_noise_mag = 100 # p r o c e s s n o i s e : ( s t d v o f a c c e l e r a t i o n : me . s ^−2)

10 t kn_x = 1 # measurement n o i s e i n t h e h o r i z o n t a l d i r e c t i o n ( x a x i s ) .
11 t kn_y = 1 # measurement n o i s e i n t h e h o r i z o n t a l d i r e c t i o n ( y a x i s ) .
12 r a d i u s _ c i r c l e = 20 # r a d i u s t o p l a y wi th
13

14 Ez = np . a r r a y ( [ [ tkn_x , 0 ] , [ 0 , t kn_y ] ] )
15

16 Ex = np . a r r a y ( [ [ d t ∗∗4 / 4 , 0 , d t ∗∗3 / 2 , 0 ] , [ 0 , d t ∗∗4 / 4 , 0 , d t ∗ ∗ 3 / 2 ] , [ d t ∗∗3 / 2 ,
0 , d t ∗∗2 , 0 ] , [ 0 , d t ∗∗3 / 2 , 0 , d t ∗∗ 2 ] ] )

17

18 P = Ex . copy ( )
19

20 # s t a t e −s p a c e model m a t r i c e s
21 A = np . a r r a y ( [ [ 1 , 0 , d t , 0 ] , [ 0 , 1 , 0 , d t ] , [ 0 , 0 , 1 , 0 ] , [ 0 , 0 , 0 , 1 ] ] ) # s t a t e m a t r i x
22 B = np . a r r a y ( [ [ 0 . 5 ∗ d t ∗∗2 ] , [ 0 . 5∗ d t ∗∗2 ] , [ d t ] , [ d t ] ] )
23 C = np . a r r a y ( [ [ 1 , 0 , 0 , 0 ] , [ 0 , 1 , 0 , 0 ] ] )
24

25 i f os . p a t h . e x i s t s ( ’ . / r e s u l t ’ ) i s F a l s e :
26 os . mkdir ( ’ r e s u l t ’ )
27

28 f o r n i n r a n g e ( s t a r t _ f r a m e , end_f rame ) :
29 Q_loc_obs = np . a r r a y ( [ [ x [ n ] ] , [ y [ n ] ] ] )
30 # p r e d i c t t h e n e x t s t a t e
31 Q _ e s t i m a t e = A. d o t ( Q _ e s t i m a t e ) + HexAccel_noise_mag∗np . random . randn ( ) ∗u

∗B
32 # u p d a t e t h e c o v a r i a n c e m a t r i x
33 P = np . d o t (A, np . d o t ( P ,A. T ) ) + Ex
34 # Kalman Gain
35 M = np . d o t (C , np . d o t ( P , C . T ) ) + Ez
36 M_inv = np . l i n a l g . i n v (M)
37 K = np . d o t ( P , np . d o t (C . T , M_inv ) )
38

39 # u p d a t e
40 Q _ e s t i m a t e = Q _ e s t i m a t e + np . d o t (K, Q_loc_obs − np . d o t (C , Q _ e s t i m a t e ) )
41 # u p d a t e cov
42 P = np . d o t ( np . eye ( 4 ) − np . d o t (K, C) , P )
43

44 I = cv2 . imread ( os . p a t h . j o i n ( fo lde r_name , ’ f rame ’+ s t r ( n ) + ’ . j p g ’ ) )
45 cv2 . c i r c l e ( I , ( i n t ( x [ n ] ) , i n t ( y [ n ] ) ) , 1 0 0 , ( 0 , 2 5 5 , 0 ) , 1 0 )
46 cv2 . c i r c l e ( I , ( i n t ( Q _ e s t i m a t e [ 0 ] ) , i n t ( Q _ e s t i m a t e [ 1 ] ) ) , 1 0 0 , ( 0 , 0 , 2 5 5 ) , 1 0 )
47 savename = ’ r e s u l t / f r a m e _ f i l t e r e d ’+ s t r ( n ) + ’ . j p g ’
48 cv2 . i m w r i t e ( savename , I )

Listing 2.7: Implementation of Kalman filter iterations

2.5 Further Readings
Further references on Matplotlib can be accessed online HERE .include link to

matlplotlib help
include link to
matlplotlib help Further references on linear algebra HERE

include references to
linear algebra books
include references to
linear algebra books



3. Linear Algebra for Data Representation

3.1 Ain’t nothing like the real thing

Considering a vector space with finite dimensions, it is straight forward to understand that an
infinite number of possible basis exist. The question thus arising is: is there a vector basis ”better”
than the other?
The answer, of course, is driven by the data at hand and the problem we wish to solve.

3.2 Matrix Decompositions

3.2.1 Why Decompositions are Useful
Matrix decompositions aim to express a matrix as a product of matrix. In a sense we aim to
decompose an application as a sequence of “simpler” linear applications. For example, a geometric
similarity can be decomposed as a sequence of a rotation, a scaling and possibly a translation, so that
both objects are similar. These decompositions help in either denoising data, either characterizing
datasets in a more useful basis. Most of the presented decompositions can be computed in practice
by using the functions existing in the numpy.linalg and scipy.linalg package.

3.2.2 LU decomposition
LU decomposition is strongly related to the Gauss elimination procedure when solving a linear
systems.

Definition 3.2.1 — LU decomposition. Given a square matrix A, it can be decomposed into
the product of one lower triangular matrix L with one upper triangular matrix U:

A = LU (3.2.1)

Equation (3.2.1) summarizes the process of Gaussian elimination in matrix form, possibly with the
addition of a permutation matrix. The following example illustrates the LU decomposition of a
given matrix:

1 i m p o r t numpy as np
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2 i m p o r t s c i p y . l i n a l g
3 i m p o r t p p r i n t
4

5 A = np . a r r a y ( [ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] , [ 7 , 8 , 9 ] ] )
6 L ,U= s c i p y . l i n a l g . l u (A, p e r m u t e _ l = True )
7 p p r i n t . p p r i n t (A)
8 p p r i n t . p p r i n t ( L )
9 p p r i n t . p p r i n t (U)

10 p p r i n t . p p r i n t ( np . d o t ( L ,U) )

Listing 3.1: LU decomposition

The LU decomposition is mainly used for solving linear systems, since in the case of triangular
systems the number of operations for matrix inversion is approximately halved. However, since it
involves numerical inversions in the process, it is not a numerically stable decomposition. The next
decomposition, in that matter, is way more attractive.

3.2.3 QR decomposition
Definition 3.2.2 — QR decomposition. Given a square matrix A, it is possible to decompose
it as a product

A = QR,

where Q is an orthogonal matrix (meaning that QT Q = QQT = I) and R is a upper triangular
matrix.

This decomposition is inherently connected to Gram-Schmidt orthogonalization of a basis: the
matrix R includes all the remainders of the projected vectors of the original basis, while the columns
of Q denote the new orthonormal basis obtained.
The following script performs the QR decomposition of given matrix.

1 i m p o r t numpy as np
2 i m p o r t p p r i n t
3

4 A = np . a r r a y ( [ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] , [ 7 , 8 , 9 ] ] )
5 Q, R=np . l i n a l g . q r (A)
6 p p r i n t . p p r i n t (A)
7 p p r i n t . p p r i n t (R)
8 p p r i n t . p p r i n t (Q)
9 p p r i n t . p p r i n t ( np . d o t (Q, R) )

Listing 3.2: QR decomposition

When solving numerical systems, the QR decomposition is more appealing, since one of the
inversion appearing in the LU decomposition is replaced by a direct matrix multiplication (due to
the orthonormality property, inverting Q is equivalent to multiplying by its transpose). However,
a direct implementation is also numerically unstable, since the normalization of the orthogonal
vectors in Q can yield large or very small values. In practice, QR decomposition is most often
achieved using more complex algorithms, (Householder reflections in the Numpy module).

3.2.4 Cholesky Decomposition
Cholesky decomposition operates on symmetric positive-definite matrices; that is, matrices A such
that A = AT and xT Ax > 0 for all vector x. Such matrices can be associated to quadratic forms,
are non-singular and have strictly positive eigenvalues.
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Definition 3.2.3 — Cholesky decomposition. For such a matrix, there exists an upper trian-
gular matrix R such that

A = RT R (3.2.2)

Equation (3.2.2) is the equivalent of the squared root for real numbers. This decomposition is
particularly important, since in many practical applications (gradient for regression, covariance
matrix decomposition), we investigate matrices of the form AT A, which are symmetric and
semidefinite.

� Example 3.1 As an example, we will compute the Cholesky decomposition of the matrix 1 2 3
2 29 −14
3 −14 26

 .
This computation will also provide an insight on the algorithm used to compute this decomposition.
The objective matrix is

R =

 r1 r2 r3
0 r4 r5
0 0 r6

 ,
and the following equality must hold: 1 2 3

2 29 −14
3 −14 26

=

 r1 0 0
r2 r4 0
r3 r5 r6

 ·
 r1 r2 r3

0 r4 r5
0 0 r6


Multiplying the first row by the columns gives

r2
1 = 1,r1r2 = 2,r1r3 = 3,

and due to the known positivity of the diagonal

r1 = 1,r2 = 2,r3 = 3.

Multipling the second row by the second and third lines gives

r2
2 + r2

4 = 29, r2r3 + r4r5 =−14,

thus
r4 = 5,r5 =−4,

and eventually multiplying the third row by the third column gives

r2
3 + r2

5 + r2
6 = 26,

thus

r6 = 1, R =

 1 2 3
0 5 −4
0 0 1


�

Note that the same algorithm can be used to check whether a matrix is symmetric definite. Cholesky
decomposition is performed in Python using numpy.linalg.cholesky.
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3.3 Eigenvectors simplify things
Given a linear application A, we say that x is an eigenvector if there exists λ such that

Ax = λx (3.3.1)

In (3.3.1), the parameter λ is called an eigenvalue.

3.3.1 The Idea Within
As aforementioned, a linear applications transforms a vector basis in another family of possibly
dependent vectors. However, if the associated matrix is diagonal, the application can be easily
understood as scaling / flipping vectors of the existing basis. Knowing which vectors remain
invariant (up to a scaling) after applying a linear transformation is therefore important, since it
allows to simplify the understanding of the linear application. When the matrix is related to data
(e.g. a covariance matrix, which represents the linear dependence between couples of random
variables), computing the eigenvectors provides the main directions around which the data are
organized1. Finding eigenvectors/eigenvalues is also critical when solving differential systems,
since it allows to deal with each differential equation independently.

� Example 3.2 Given the matrix  1 2 3
2 29 −14
3 −14 26

 ,
we will find its eigenvalues and eigenvectors. This can be easily computed with Python using the
following code:

1 i m p o r t numpy as np
2 i m p o r t p p r i n t
3

4 A = np . a r r a y ( [ [ 1 , 2 , 3 ] , [ 2 , 2 9 , −1 4 ] , [ 3 , −1 4 , 2 6 ] ] )
5

6 v a l u e s , v e c t o r s =np . l i n a l g . e i g (A)
7

8 p p r i n t . p p r i n t ( v a l u e s )
9 p p r i n t . p p r i n t ( v e c t o r s )

Listing 3.3: Eigenvalues and eigenvectors with Numpy

�

3.4 The SVD
Singular Value Decomposition (SVD) is one of the most important decompositions in numerous
fields, e.g. statistical analysis and signal processing. It can be seen as an extension of diagonalization
(finding all the eigenvalues and eigenvectors) of a square matrix, for matrices of general sizes and
ranks. It is particularly useful for data dimensionality reduction.

3.4.1 The Idea and the Result
Definition 3.4.1 — SVD decomposition. Assume that we have a matrix A of size n×d, where
n and d are not necessarily equal. This matrix can represent d vectors of data organized in a

1Incidentally, eigenvectors are an inherent part of the PageRank algorithm of Google. . .
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matrix way, or any other linear application. Denote by k its rank

A = UDVT , (3.4.1)

where in (3.4.1) U denotes an orthonormal n×n matrix, V is a d×d orthonormal matrix and D
is a n×d whose only diagonal terms can be different from 0.

The non-zero terms of D are called the singular values of A, and are the generalization of the
concept of eigenvalues for squared matrices. The intuition within this decomposition is easy to
grasp: any linear application can be understood as a rotation, followed by a scaling along each new
dimension, followed eventually by a rotation on the image subspace. Note that the decomposition is
not unique, but we can make it unique by sorting the singular values from the largest to the smallest.
SVD is often used in dimensionality reduction of problems, since the singular values of A are the
squared roots of the eigenvalues of AT A. The largest a singular value is, the more variance there is
along this direction, therefore the more relevant is this eigenvector for data representation.

3.4.2 Case Study: PCA for faces (Eigenfaces)
Principal Component Analysis is a way to reduce the dimensionality of a dataset. Given a matrix
dataset A, it aims to represent the k most relevant statistical information, in the variance sense.
More precisely, we represent the data by means of the eigenvectors of the covariance matrix AT A.
The steps to perform a PCA are:

1. Perform an SVD on A
2. Use the columns of V associated with the k-largest singular values as the eigenvectors of

AT A.
On a given vector x, we can thus apply the PCA transformation DVT x to get the most relevant
information in terms of maximal variances. When applying this decomposition to pictures of faces
(reshaped in a vector form), it turns out that only a few eigenvectors (called eigenfaces) are enough
to represent general faces with a fair accuracy. The following Python codes takes a dataset from
well-known faces, performs a PCA to reduce the dimensionality of the problem to 100, and train a
coarse classifier for face recognition. Besides the much faster execution times, we also get better
recognition results, since we force the classifier to focus only on the most relevant features from
the very beginning.

1 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
2

3 from s k l e a r n . m o d e l _ s e l e c t i o n i m p o r t t r a i n _ t e s t _ s p l i t
4 from s k l e a r n . d a t a s e t s i m p o r t f e t c h _ l f w _ p e o p l e
5 from s k l e a r n . m e t r i c s i m p o r t c l a s s i f i c a t i o n _ r e p o r t
6 from s k l e a r n . d e c o m p o s i t i o n i m p o r t PCA
7 from s k l e a r n . n e u r a l _ n e t w o r k i m p o r t M L P C l a s s i f i e r
8

9 # Load d a t a s e t o f p r e s i d e n t s f a c e s − i t c o n t a i n s 1140 p i c t u r e s o f s i z e s 62 x47
10 l f w _ d a t a s e t = f e t c h _ l f w _ p e o p l e ( m i n _ f a c e s _ p e r _ p e r s o n =100)
11

12 # s a v e s t h e h e i g h t and wid th o f t h e images , a s w e l l a s t h e d a t a and l a b e l s
13 _ , h , w = l f w _ d a t a s e t . images . shape
14 # d a t a i s a l r e a d y p r e p r o c e s s e d as v e c t o r s o f s i z e 62 x47
15 X = l f w _ d a t a s e t . d a t a
16 y = l f w _ d a t a s e t . t a r g e t
17 t a r g e t _ n a m e s = l f w _ d a t a s e t . t a r g e t _ n a m e s
18

19 # s p l i t i n t o a t r a i n i n g and t e s t i n g s e t
20 X _ t r a i n , X_ te s t , y _ t r a i n , y _ t e s t = t r a i n _ t e s t _ s p l i t (X, y , t e s t _ s i z e = 0 . 3 )
21
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22 # Compute a PCA
23 n_components = 100
24 pca = PCA( n_components=n_components , wh i t e n =True ) . f i t ( X _ t r a i n )
25

26 # a p p l y PCA t r a n s f o r m a t i o n
27 X _ t r a i n _ p c a = pca . t r a n s f o r m ( X _ t r a i n )
28 X _ t e s t _ p c a = pca . t r a n s f o r m ( X _ t e s t )
29

30 # t r a i n a n e u r a l ne twork , w i th PCA and w i t h o u t
31 p r i n t ( " F i t t i n g t h e c l a s s i f i e r t o t h e t r a i n i n g s e t " )
32 c l f = M L P C l a s s i f i e r ( h i d d e n _ l a y e r _ s i z e s = ( 1 0 2 4 , 5 1 2 , 1 0 0 , ) , b a t c h _ s i z e =256 , v e r b o s e

=True , e a r l y _ s t o p p i n g =True ) . f i t ( X _ t r a i n _ p c a , y _ t r a i n )
33 c l f 2 = M L P C l a s s i f i e r ( h i d d e n _ l a y e r _ s i z e s = ( 4 0 0 0 , 2 0 0 0 , 1 0 0 , ) , b a t c h _ s i z e =256 ,

v e r b o s e =True , e a r l y _ s t o p p i n g =True ) . f i t ( X _ t r a i n , y _ t r a i n )
34

35 y_pred = c l f . p r e d i c t ( X _ t e s t _ p c a )
36 p r i n t ( c l a s s i f i c a t i o n _ r e p o r t ( y _ t e s t , y_pred , t a r g e t _ n a m e s = t a r g e t _ n a m e s ) )
37 y_pred2 = c l f 2 . p r e d i c t ( X _ t e s t )
38 p r i n t ( c l a s s i f i c a t i o n _ r e p o r t ( y _ t e s t , y_pred2 , t a r g e t _ n a m e s = t a r g e t _ n a m e s ) )

Listing 3.4: Dimensionality reduction and eigenfaces

3.5 Further Readings
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4. Basics of Unconstrained Optimization

4.1 Ain’t no Mountain High Enough

Optimization deals with the selection of the best value with respect to a known criterion from
a known set. From an engineering point of view, it is one the most important / commonly used
field, since many engineering solutions can be seen as the solution of an optimization problem
(maximizing the power, minimizing the cost, etc...). As such, it is important to understand notations
which appear frequently in numerous fields, and to have a basic knowledge of optimization
algorithms which are frequently used.

The most primitive approach we might think of is to investigate all the possible values that the
function takes, and retain either its minimal / maximal value. This approach (also known as brute
force approach), clearly, is not retained in practice: besides the fact that the function can take an
infinite number of values, the number of verifications we would do here will grow exponentially
with the dimension of the function. The intuition in the matter is that an efficient extremum search
depends on the local properties of the function at hand. For example, very intuitively speaking, if
we aim to find a minimum, and know that at a given point the function is non-increasing, it might
be a good idea to investigate in priority this direction.

However, this kind of local idea can raise other issues. If we consider the function displayed in
Figure 4.1.1, we can understand that this task can be very challenging: though this function on [0,1]
has one single global minimum, if we limit ourselves to [0,0.2], it seems that the minimum is around
−1. Obviously this is not the case, but this illustrates one of the main difficulties encountered in
the field: in most algorithms, initialization (that is, where do we start our minimization finding) is
critical. This also shows that the solution strongly depends on the domain we investigate. When we
force the solution to belong to a given domain (or to satisfy a certain condition), we shall say that
we address a constrained optimization problem. Otherwise, the optimization problem is said to be
unconstrained.
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Figure 4.1.1: The function f (t) = (6t−2)2sin(12t−4) on [0,1] - depending on where we start our search
for a minimum, results may strongly differ.

4.2 Mathematical Notations

The following notations are commonly used in optimization theory, and are important to know.

Definition 4.2.1 Given a function f defined on a domain D, the minimal value m that f attains
on D is denoted by min

x∈D
f (x), that is for all x ∈D, f (x)> m; the element (not necessarily unique)

x0 ∈ D such that f (x0) = minx∈D f (x) is denoted by argmin
x∈D

f (x).

Similarly, the maximal value of f and the element for which the maximum is attained are
denoted respectively by max

x∈D
f (x) and argmax

x∈D
f (x).

� Example 4.1 Consider the function f : x 7→ x2 +2. It is straightforward to check that min
R

f = 2,

argmin
R

f = 0. �

4.3 Convex Functions and Convex Optimization

One critical subproblem in the field of optimization is the problem of convex optimization, that
is the particular case when the function we wish to optimize is convex. The following definition
introduces the concept of convex functions.

Definition 4.3.1 — Convex function. A function f is convex when for all 0≤ λ ≤ 1 and for
all x1,x2, we have:

f (λx1 +(1−λ )x2)≤ λ f (x1)+(1−λ ) f (x2).

In case we have f (λx1 +(1−λ )x2) = λ f (x1)+(1−λ ) f (x2) if and only if λ = 0 and λ = 1,
we shall say that the function is strictly convex.

Graphically, given two points (x1, f (x1)) and (x2, f (x2)), the graph reprensenting f in the domain
[x1,x2] will always be below the line generated by the two points, as seen in Figure 4.3.1.
For example, the functions e−x, x2n are convex. We will further on say that f (x) is concave if and
only if − f (x) convex. Observe that most functions are neither convex nor concave, and that the
linear functions are the only ones being both convex and concave.
The following result provides a sufficient condition for convextiy, which often holds on practice.
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(x1, f(x1))
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f(λx1 + (1 − λ)x2)

λf(x1) + (1 − λ)f(x2)

Figure 4.3.1: Graphical example of a convex function

Proposition 4.3.1 If f ′′(x)≥ 0, then f (x) is convex.

Proof. Due to Taylor-Young equality:

f (b) = f (a)+ f ′(a)(b−a)+ f ′′(x)
(b−a)2

2
, a≤ x≤ b.

On the one hand, for a = λx1 +(1−λ )x2,b = x1, we get that

f (x1)≥ f (λx1 +(1−λ )x2)+ f ′(λx1 +(1−λ )x2)(1−λ )(x1− x2),

and on the other hand for a = λx1 +(1−λ )x2, b = x2 we have

f (x2)≥ f (λx1 +(1−λ )x2)+ f ′(λx1 +(1−λ )x2)λ (x2− x1).

Thus
λ f (x1)+(1−λ ) f (x2)≥ f (λx1 +(1−λ )x2)

�

Furthermore, the following property allows to build easily convex functions based on a set of known
convex functions.

Proposition 4.3.2 Every linear combination of convex functions is also a convex function.

4.3.1 Why Convexity is Cool? Which Other Properties?
Many costs functions appearing in fields such as regression, statistics, estimation theory and so forth
are naturally convex. One of the most important properties that convex function hold is that a local
minimum is also global, provided the convex function is regular enough (differentiable). It means
that in practice, when a numerical optimization technique converges, we can truly assess from the
returned value the minimum in the convex case. Furthermore, if the function is strictly convex, the
minimizer is also unique. All these results illustrate the importance of convex optimization.
As mentioned before, convexity is one important property for a function to have for any optimization
problem. This is not the only one though, since any iterative method to find a minimum and its
associated minimizer can also benefit for additional local knowledge. For example, if the function
we wish to minimize is differentiable, we also have access to the function’s local behavior. In that
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case, it would be legitimate to look for the minimizer based on the steepest decrease, based on
the derivatives’ values. More generally, the more derivatives we know, the more we can use this
knowledge to accelerate the convergence of our optimizations algorithms.
In the examples we give further, we shall assume that the function we wish to minimize is
differentiable.

4.3.2 Main Ideas for Programming an Optimization Procedure - a Fable

Let’s consider the toy example of four people who are standing in the middle of a mountain
landscape, and wish to attain a valley at the lowest altitude.
• The first man goes along all the possible paths, and tries them all in an exhaustive manner.

He will eventually attain the lowest altitude valley, but most chances are he will die of old
age before he attains it. This approach illustrates the brute-force approach detailed before; it
is interesting only for very simple functions and very low dimensions, but usually fails to
provide satisfatory results in a reasonable computation time.
• The second guy looks where the steepest descent can be obtained by judging from where he

stands, and goes several meters in that direction. He then stops, and investigates from his
new position in which direction is the steepest descent, and then replicates his behavior. He
will eventually reach a valley, but has no guarantee that he attained the lowest one. This idea
illustrates gradient-based methods, which are commonly used in the field: they are generic,
can be accelerated in a number of ways, and provide sub-optimal solutions easily. However,
they can be slow on pathological examples or high dimensional functions, and only local
optimizations can be attained.
• The third man measures the altitude of three points in the mountain that he can see, and goes

along the following idea: the highest altitude point is retained, and we try to find a better
candidate on the line built with this point and the center of mass of the two other points.
If there is an alternative outside the defined triangle, we go along that path and extend our
new triangle that way. Otherwise, we contract it. If we arrive at some valley, we restart the
procedure. Eventually, this man will arrive to the lowest valley, at a time that is way more
reasonable that the brute force approach. It symbolizes the function-only based exploratory
approaches based on meta-heuristics, where no differentiation is required (either because
we do not know them, or because we cannot compute them analytically). They are general
methods, which also converge to local minimum (unless we do some warm start-over search),
and are a good alternative when either the function is complicated, or not completely known.
Note, however, that convergence in that case is more complicated to diagnose.
• The fourth man starts like the second one, but introduces a little randomness: he does not

necessarily follow the steepest descent, but modifies it slightly and randomly. Furthermore,
when finding a direction which makes him go up a little, he does not necessarily discard it,
but rather tosses a coin: if he gets a ”heads”, he follows it, otherwise he stays where he stands.
Eventually he will also get to the lowest valley, though there is no way to predict when. This
man symbolizes the stochastic optimization approaches. Such methods are powerful in the
sense that they allow to go out of local minima if any. The price to pay is a much slower rate
of convergence.

4.4 Some Techniques of Unconstrained Optimization

For all the presented algorithms, we will present one example in the 1D case, and another one
in the 2D case, for the sake of visualization. The 1D-function used is the Forrester function
f (x) = (6x−2)2 sin(12x−4) for x in [0,1], presented in Figure 4.1.1. The 2D example used is the
Rosenbrock function f (x,y) = 100(y− x2)2 +(1− x)2 (banana-shaped function), whose minimum
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value is 0 and is attained at (1,1); this function is presented in Figure 4.4.1.
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Figure 4.4.1: Rosenbrock function. Minimizer is f (1,1) = 0.

4.4.1 Using only the Functions

When no information on the gradient is available, two strategies may be used: either compute
the gradient information numerically (with the involved possible numerical instability), or try to
optimize with using this information.
The Nelder-Mead algorithm can be seen as an extension of the dichotomy procedure, where instead
of considering a line we use the points of a simplex to deal with multiple dimensions. This method

4.4.2 Using the Functions and their Gradients: The Gradient Method

The gradient descent is an iterative method whose objective is to provide a local minimum and its
minimizer. Conceptually, we want to implement

x(k+1) = x(k)+ tk∆x(k),

where x(k) denotes the value of the minimizer at iteration k, ∆x(k) is the search direction of the
minimum we wish to investigate (it is not necessarily a unit vector), and tk > 0 is a weight (how
faithful we are in that given direction).
For the sake of the argument, let us assume that the function f we wish to minimize is convex and
differentiable. Then, we know due to a convexity argument that if ∇ f (x(k))T (y− x(k))< 0, then
f (y)> f (x(k)). Consequently, the search direction must satisfy ∇ f (x(k))T ∆(x(k))< 0 to guarantee
that we decrease the value of f at each iteration. Geometrically, it means that the search direction
must make an acute angle with the opposite of the gradient.
Therefore, the gradient method for finding the minimum of a function can be summarized as
follows:

1. Take a starting point x(0) (This point is often critical to guarantee the convergence - it is
recommended to perform several runs)

2. Compute ∆x =−∇ f (x(k))
3. Update x(k+1) = x(k)+ tk∆x until convergence.

Convergence is usually evaluated based on
|x(k+1)− x(k)|

x(k)
< ε , where ε is a user-defined threshold.

This algorithm is conceptually very simple, but convergence is usually very slow.
The following code presents the gradient descent for the Rosenbrock function:
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1 d e f r o s e n b r o c k ( x ) :
2 r e t u r n 100∗ ( x [1]−x [ 0 ]∗ x [ 0 ] ) ∗∗2 + (1−x [ 0 ] ) ∗∗2
3

4 d e f r o s e n b r o c k _ g r a d i e n t ( x ) :
5 g rad = np . z e r o s ( ( 2 , ) )
6 g rad [ 0 ] = 400∗x [ 0 ]∗ x [ 0 ]∗ x [0]−400∗x [ 0 ]∗ x [1 ]+2∗ x [0]−2
7 g rad [ 1 ] = 200∗x [ 1 ] ∗ ( x [1]−x [ 0 ]∗ x [ 0 ] )
8 r e t u r n g rad
9

10 d e f g r a d i e n t _ d e s c e n t ( x0 , s t e p , t o l =1e−3, m a x _ i t e r =10000 , v e r b o s e = True ) :
11 e r r o r = np . I n f
12 s t o p p i n g _ c r i t e r i o n = F a l s e
13 x = x0
14 x _ p r e v i o u s _ i t e r a t i o n = x0
15 c u r r e n t _ i t e r a t i o n = 0
16 v a l u e s _ x = [ ]
17 w h i l e s t o p p i n g _ c r i t e r i o n i s F a l s e :
18 c u r r e n t _ i t e r a t i o n += 1
19 g r a d i e n t _ v a l u e = r o s e n b r o c k _ g r a d i e n t ( x )
20 x = x − s t e p ∗ g r a d i e n t _ v a l u e
21 e r r o r = np . l i n a l g . norm ( x−x _ p r e v i o u s _ i t e r a t i o n ) / np . l i n a l g . norm (

x _ p r e v i o u s _ i t e r a t i o n )
22 i f e r r o r < t o l o r c u r r e n t _ i t e r a t i o n == m a x _ i t e r :
23 s t o p p i n g _ c r i t e r i o n = True
24 x _ p r e v i o u s _ i t e r a t i o n = x
25 v a l u e s _ x . append ( x )
26 i f v e r b o s e i s True :
27 p r i n t ( ’ I t e r a t i o n {} , x = {} , e r r o r = {} ’ . f o r m a t ( c u r r e n t _ i t e r a t i o n , x

, e r r o r ) )
28

29 r e t u r n v a l u e s _ x
30

31 p l t . f i g u r e ( )
32 X = np . a r a n g e (−3 , 3 , 0 . 1 )
33 Y = np . a r a n g e (−6 , 3 , 0 . 1 )
34 X, Y = np . meshgr id (X, Y)
35 Z = 100∗ (Y−X∗X) ∗∗2 + (1−X) ∗∗2
36

37 f o r x i n np . a r a n g e (−3 ,4) :
38 f o r y i n np . a r a n g e (−2 ,2) :
39 r e s = g r a d i e n t _ d e s c e n t ( [ x , y ] , 0 . 0 0 0 0 1 , m a x _ i t e r =100 , v e r b o s e = F a l s e )
40 x_coord = [ a [ 0 ] f o r a i n r e s ]
41 y_coord = [ a [ 1 ] f o r a i n r e s ]
42 p l t . p l o t ( x_coord , y_coord , ’ k ’ )
43

44 p l t . c o n t o u r (X, Y, np . l o g (1+Z ) , 2 0 )
45 p l t . show ( )

Listing 4.1: Gradient descent for the Rosenbrock function

The code shows the iterations of the gradient descent from several starting points. As it can be
seen from Figure 4.4.2, convergence occurs if we have a good initialization, but the algorithm
may diverge. This is due to the fact that in the case of complicated (ill-conditioned) functions, the
gradient may not point to the actual direction of the steepest descent.
In the case of more regular functions, however, convergence to a local minimum occurs after few
iterations.
In a more general case (multi-dimensional functions), the gradient descent is often slow, and is not
used in practice due to the fact that the gradient not always point in the right direction. In practice,
we rather use conjugate-gradient descent, which intuitively accelerates the gradient descent by



4.4 Some Techniques of Unconstrained Optimization 43

3 2 1 0 1 2 3
6

5

4

3

2

1

0

1

2

Figure 4.4.2: Gradient descent on the Rosenbrock functions with different iterations
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Figure 4.4.3: Gradient descent on a 1D-function = gradient descent converges to local minima

adding a momentum; numerically speaking, it means that the update rule is of the form

x(k+1) = x(k)− tk∇ f (x(k))+bk(x(k)− x(k−1)),

where the term bk depends on the Jacobian of f . A direct implementation is presented in the code
below:

1 i m p o r t s c i p y . o p t i m i z e as o p t
2 from m p l _ t o o l k i t s . mplot3d i m p o r t Axes3D
3 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
4 from m a t p l o t l i b i m p o r t cm
5 from m a t p l o t l i b . t i c k e r i m p o r t L i n e a r L o c a t o r , F o r m a t S t r F o r m a t t e r
6 i m p o r t numpy as np
7

8 X = np . a r a n g e (−3 , 3 , 0 . 1 )
9 Y = np . a r a n g e (−3 , 3 , 0 . 1 )

10 X, Y = np . meshgr id (X, Y)
11
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12 d e f q u a d r a t i c ( x ) :
13 r e t u r n ( x [0]−2) ∗∗2 / 1 6 + ( x [1]−1) ∗∗2/4
14

15 d e f q u a d r a t i c _ g r a d i e n t ( x ) :
16 g rad = np . z e r o s ( ( 2 , ) )
17 g rad [ 0 ] = 2∗ ( x [0]−2) / 1 6
18 g rad [ 1 ] = 2∗ ( x [1]−1) / 4
19 r e t u r n g rad
20

21 d e f s a v e _ s t e p ( k ) :
22 g l o b a l s t e p s
23 s t e p s . append ( k )
24

25

26 s t e p s = [ ]
27 s t e p s . append ( [ 5 , −5 ] )
28 r e s = o p t . min imize ( q u a d r a t i c , [ 5 , −5 ] , method= ’CG’ , j a c = q u a d r a t i c _ g r a d i e n t , h e s s =

h e s s i a n , c a l l b a c k = s a v e _ s t e p )
29 p r i n t ( s t e p s )
30 x_coord = [ a [ 0 ] f o r a i n s t e p s ]
31 y_coord = [ a [ 1 ] f o r a i n s t e p s ]
32 p l t . p l o t ( x_coord , y_coord , ’b−o ’ , L i n e w i d t h =1)
33 p r i n t ( l e n ( x_coord ) )
34 p l t . c o n t o u r (X, Y, Z , 2 0 )
35 p l t . show ( )

Listing 4.2: Conjugate gradient method on a quadratic function

The obtained graph is displayed in Figure 4.4.4
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4.4.3 An Important Variation: the Stochastic Gradient Descent

With the recent development of deep learning, the cost functions we wish to optimize are more and
more defined on a very high dimension space (the dimension is here defined as the number of free
variables, and in that framework is above several hundreds of millions!). Optimizing such functions
is an extremely challenging problems, even on modern computers. However, the cost functions
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involved are usually of the form

f (x) =
N

∑
k=1

fk(x). (4.4.1)

For example, the standard squared error term associated with data x1,x2, . . . ,xn is of the form

C(w) =
n

∑
k=1

(wi− xi)
2. When dealing with a large dimension problem, it is common to compute the

gradient only on a sample of the f ′ks randomly drawn (this is in the literature called a mini-batch),
and iterate until all the subfunctions fk have been used (this is called in the literature an epoch).
When the learning rate tk decreases with an appropriate rate, with relatively mild assumptions, it
is shown in the field of stochastic optimization that stochastic gradient descent converges almost
surely to a global minimum when the objective function is convex, and otherwise converges almost
surely to a local minimum.
Stochastic gradient descent is implemented in the sklearn module, and is one of the basic optimizers
which can be in the Deep Learning dedicated modules such as Pytorch, Tensorflow or Keras.

4.5 Going Further: Proximal Algorithms
In the case where functions are not differentiable, gradient methods cannot be applied out of the
box. However, if the function to minimize has a similar form as in equation (4.4.1), the gradient
method can be extended using projection operators. This approach is called proximal gradient
descent, and is extremely efficient to minimize terms related to penalized regression.
For the sake of the discussion, assume we wish to solve

argmin
β

{
f (β )+λPen(β )

}
, (4.5.1)

where f (β ) = 1
2N ‖Aβ − y‖2

2 denotes the standard convex objective cost function, differentiable
with Lipschitz continuous gradient ∇ f and Lipschitz constant L; and Pen the penalty, which
is a continuous and convex function, not necessarily differentiable everywhere. For example,
in the sparse regression framework, Pen(β ) is the penalty introduced to enforce sparsity (e.g.,
Pen(β ) = ‖β‖1 for LASSO, and Pen(β ) = ∑g∈G ‖β g‖2 for grouped LASSO – in the latter G
represents the partition of the indexes of the β ’s into non-overlapping groups). In the compressive
sensing literature, the minimization (4.5.1) is usually solved by means of one of the two following
algorithms: proximal gradient or ADMM. Both rely on the iterative computation of one or two
proximal operators, whose definition is now briefly recalled.
Given any convex, possibly non-smooth, function g, with domain of definition Dg, to be minimized,
we denote the proximal operator by

proxg(v) = argmin
x

{
g(x)+

1
2
‖x−v‖2

2

}
. (4.5.2)

Roughly speaking, (4.5.2) can be understood either as the generalization of a projection operator
or as a compromise between minimizing g while staying close to v. The cornerstone of proximal
algorithms for optimization is that x∗ is a minimizer of g if and only if it is a fixed point of proxg,
that is proxg(x∗) = x∗. Therefore, a possible, preliminary algorithm for minimizing g would be to
iterate until convergence the proximal operator:

x(n+1) = proxµg(x
(n)), (4.5.3)

where µ denotes a step size controlling on “how close” to x(n) we wish to remain at each iteration.
Though proxµ f is not a contracting, but only non-expansive, operator, it turns out that (4.5.3) can
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be adapted to a converging algorithm. We refer to [5, Chapter 3] for an in-depth explanation on
this issue and how to solve it. For further explanation, we also define the subdifferential set of any
function g as

∂g(x) =
{

y ; g(z)≥ g(x)+yT (z−x), z ∈ Dg

}
. (4.5.4)

Recall that, if g is differentiable on x, then ∂g(x) in (4.5.4) reduces to the singleton {∇g(x)}, and
that x is the minimizer of g if and only if 0 ∈ ∂g(x). Thus, the subdifferential set can be understood
as an extension of the differential operator, and it is useful to find the minimizer of convex functions
which are non necessarily differentiable, as it happens in our case.
Proximal optimization methods applied on sparse regression problems rely on two important
properties of the proximal operator:

1. proxµg = (I+µ∂g)−1

2. the separability property, namely if g is fully separable (g(x)=∑
n
i=1 gi(xi)), then (proxg(v))i =

(proxgi
(vi)).

As detailed in [5], (I+µ∂g)−1 is a relation which is single valued, and therefore can be equaled
with a function even if ∂g is not. The second property allows us to get a closed-form term for
the proximal operator of Pen in many cases, for example for LASSO, Grouped LASSO and other
related penalties. This stems from the form of the penalties introduced, which rely on `1 or `2
norms. Let us denote by β̂ a minimizer of (4.5.1), whose existence is guaranteed by convexity.
Then we have for all µ > 0:

0 ∈ ∂ (µ f +λ µPen)(β̂ )⇔ 0 ∈ µ∇ f (β̂ )+λ µ∂Pen(β̂ )

⇔ β̂ −µ∇ f (β̂ ) ∈ (I+λ µ∂Pen)(β̂ ). (4.5.5)

Using the first property with (4.5.5), we can observe that β̂ = proxµλPen(β̂ −µ∇ f (β̂ )). Thus, a
proximal gradient algorithm to obtain the solution of (4.5.1) is based on iterated computations of
the proximal operator with g = λPen, that is:{

Initialize β
(0)

Repeat β
(n+1) = proxµλPen(β

(n)−µ∇ f (β (n))),
(4.5.6)

where µ in (4.5.6) denotes a positive non-increasing step size, possibly constant. As shown in
[1], this iterative scheme is guaranteed to converge to β̂ , provided that ∇ f is L-Lipschitz, that is

‖∇ f (x)−∇ f (y)‖2≤ L‖x−y)‖2, for all x,y, and provided that µ ≤ 1
L

. For the sparse reconstruction

framework, f (β ) =
1

2N
‖Aβ −y‖2

2 and ∇ f (β ) =
1
N

AT (Aβ −y), so we can easily see that L is the

highest eigenvalue of
1
N

AT A. Consequently, in that case the optimal value of µ is constant and
known.
Obviously, the usefulness of the presented approach depends strongly on whether proxλ µPen
is easily computable or not. Fortunately, this is the case for a wide variety of sparsity-driven
regression problems. Due to the separability property, it can be shown that, for the LASSO penalty
(Pen(β ) = ‖β‖1) we have

proxλ µPen(v) =


vi−λ µ, if vi > λ µ;
vi +λ µ, if vi <−λ µ;
0, if |vi| ≤ λ µ;

whereas the explicit computation for the grouped LASSO penalty (Pen(β ) = ∑g∈G ‖β g‖2) yields

(proxλ µPen(v))g = max
{

0,1− λ µ

‖vg‖2

}
vg.
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Moreover, in practice the convergence of (4.5.6) can be accelerated when the same idea of adding
a momentum in the conjugate gradient is applied with β

(n) and β
(n−1). This leads to the FISTA

approach [1], whose rate of convergence is better than the direct application of (4.5.6) by an order
of magnitude:

Data: λ > 0, 0 < µ < 1/L
Result: β̂ , a closed-form solution of (4.5.1)
Initialization: set y(1) = β

(0), t1 = 1;
while Convergence is not attained do

Compute;
β
(n+1) = proxµλPen(y(n)−µ∇ f (y(n)));

tn+1 =
1+
√

1+4t2
n

2
;

y(n+1) = β
(n)+

(
tn−1
tn+1

)
(β (n+1)−β

(n));

end
Algorithm 1: The FISTA optimization method [1].

4.6 Case study: A Tikhonov regularization
4.6.1 The Equations

Given a matrix A, a vector of observations y and a real number r > 0, Tikhonov regularization is
defined as the following optimization problem:

xTikh = argmin
x
{‖y−Ax‖2

2 + r‖x‖2
2} (4.6.1)

In equation (4.6.1), the parameter r is a trade-off parameter between the precision of the regressor
(we wish to fit the curve y with a linear combination of the columns of A) and a penalty term which
shrinks the values of the entries of x. This problem is more complex than linear regression, however
it remains a convex problem where the objective function is differentiable. Namely:

f (x) = ‖y−Ax‖2
2 + r‖x‖2

2

∇ f (x) =−2AT (y−Ax)+2rx

Thus, the minimization can be easily solved using one of the aforementioned methods. The code
can be found in the companion Jupyter notebook.

4.7 Further Readings
It is impossible to learn optimization without at first look at [3]: this book provides a full coverage
of the field of convex optimization, and is freely accessible online. Furthermore, it is exhaustive,
and provides clear insights on how to solve in practice optimization problems.
The rather nice example of the one-dimensional function exhibiting all the problematic points at
once in Figure 4.1.1 was taken from [4].





5. Constrained Optimization Techniques

5.1 Seasons in the Abyss

In the previous chapter, we investigated methods used in unconstrained optimizations. Namely, the
task at hand was either to find a minimal/maximal value, or to find where this minimal/maximal
value is attained. However, there are in most practical problems applications, the practicioner has to
take into account additional constraints about the solution (positivity, sparsity, definition in a known
domain, etc.). Though we can still verify at each iteration of the previous method whether we still
stand in the domain defined by the constrained, there is no guarantee that we attain an optimal value
by doing so. Thus, we need additional insights to address constrained optimization problems

5.2 Lagrange Multipliers for Equality Constraints

The first kind of constraints we wish to investigate are the equality constraints, that is the problem
at hand is

Find argmin f (x)
such that g(x) = 0

(5.2.1)

Obviously, a non-zero constraint can be included in the very definition of g. This problem is
usually solved by the Lagrange multipliers, which allows to address (5.2.1) as an unconstrained
optimization problem. To further grasp the general description of the method, we first focus on a
simple example.

5.2.1 Introductory example
Assume we wish to solve

Find argminx2 + y2

such that y = 3
(5.2.2)

Here f (x,y) = x2 + y2, and g(x,y) = y. The function is displayed in Figure 5.2.1
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Figure 5.2.1: The function we wish to minimize. The admissible set is displayed in black.

Since we have an additional constraint, we want to find the solution on the admissible set displayed
in black. In that case, the solution is clearly the point (0,3), and in that point the admissible set
{x2 + y2 ; y = 3} is tangent to the level line f (x,y) = 9. Since both curves are tangent, it means
that at this point the gradients of f and g are orthogonal to the same vector x0 = (1,0,0). We have

∇ f (0,3) =

 0
9
0

 , ∇g(0,3) =

 0
1
0


At the solution point, the gradients are collinear as well, thus we have

∇ f (0,3) = 9∇g(0,3)

5.2.2 Method of Lagrange Multipliers
The idea underneath Lagrange multipliers is that we must find the admissible points at which the
gradients of the constraint and the function are orthogonal to the same vector space. To do so, we
define

L(x,λ ) = f (x)−λg(x). (5.2.3)

[Note that in (5.2.3), the minus sign is not mandatory and can be replaced by an addition, since we
are interested in collinearity.]
We assume here that both functions f and g are differentiable. First of all, we can remark that if x∗
is an admissible solution of (5.2.1), then the solution of the problem

Find argminL(x,λ ) (5.2.4)

is of the form (x∗,λ ∗); indeed, as discussed above, at the solution point x∗ both gradients of f and
g are collinear, thus there exists a real number λ ∗ such that ∇L(x∗,λ ∗) = 0. Thus, the interest of
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introducing the function L is double. First, the solution of (5.2.1) is one of the solution candidates of
argminL. Second, we can solve (5.2.1) by solving the unconstrained optimization problem (5.2.4),
on which the methods of the previous chapters can be applied. Thus, if both functions f and g are
differentiable, the steps of the Lagrange multipliers method are:

1. Define the Lagrangian (5.2.3)
2. Compute the gradient ∇L(x,λ )
3. Solve ∇L(x,λ ) = 0
4. Find among the solutions of ∇L(x,λ ) = 0 the solution of (5.2.1).

Note that if one of the functions f or g is not differentiable everywhere, steps 2 and 3 of the method
can be replaced by a proximal algorithm to find the minimizer of L, as seen in the previous chapter.
For example, a code solving (5.2.2) can be as follows:

1 d e f f ( x ) :
2 r e t u r n x [ 0 ]∗∗2 + x [ 1 ]∗∗2
3

4 d e f l a g r a n g i a n _ f ( x ) :
5 r e t u r n x [ 0 ]∗∗2 + x [ 1 ]∗∗2 − x [ 2 ] ∗ ( x [1]−3)
6

7 d e f l a g r a n g i a n _ g r a d i e n t ( x ) :
8 g rad = np . z e r o s ( ( 3 , ) )
9 g rad [ 0 ] = 2∗x [ 0 ]

10 g rad [ 1 ] = 2∗x [1]−x [ 2 ]
11 g rad [ 2 ] = −(x [1]−3)
12 r e t u r n g rad
13

14 r e s = o p t . r o o t ( l a g r a n g i a n _ g r a d i e n t , [ 1 , 1 , 1 ] )
15 p r i n t ( r e s )

Listing 5.1: Finding the root of the Lagrangian’s gradient

The code returns the following:

fjac: array([[-1.00000000e+00, -8.89843754e-14, -1.77968751e-13],
[-2.81366973e-17, -8.94427191e-01, 4.47213596e-01],
[ 1.99007475e-13, -4.47213596e-01, -8.94427191e-01]])

fun: array([-8.07793567e-28, 0.00000000e+00, -0.00000000e+00])
message: ’The solution converged.’

nfev: 6
qtf: array([4.36228831e-12, 1.98602730e-16, 4.87728590e-12])

r: array([-2.00000000e+00, 8.90325845e-13, 5.34128297e-13, -2.23606798e+00,
8.94427191e-01, 4.47213595e-01])

status: 1
success: True

x: array([-4.03896783e-28, 3.00000000e+00, 6.00000000e+00])

and we can see that the only candidate point is (0,3,6), thus the solution should be (0,3), and it is
indeed the case.
Alternatively, we can program the optimization in a straightforward manner:

1 d e f f u n c t i o n ( x ) :
2 r e t u r n x [0]∗∗2+ x [ 1 ]∗∗2
3

4 d e f c o n s t r a i n t ( x ) :
5 r e t u r n x [1]−3
6

7 cons = { ’ t y p e ’ : ’ eq ’ , ’ fun ’ : c o n s t r a i n t }
8
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9 r e s = o p t . min imize ( f u n c t i o n , [ 0 , 0 ] , c o n s t r a i n t s = cons )
10

11 p r i n t ( r e s )

Listing 5.2: Equality Constraint Optimization

and the solution displayed is

fun: 9.0
jac: array([0., 6.])

message: ’Optimization terminated successfully.’
nfev: 13
nit: 3

njev: 3
status: 0

success: True
x: array([-2.59052039e-16, 3.00000000e+00])

Obviously, this method can be extended to a set of constraints: assume now that we wish to solve

Find argmin f (x)
such that g1(x) = c1

g2(x) = c2
...

gN(x) = cN

The same idea can be generalized to the multidimensional case, if we define λ = [λ1 . . . λN ]
T and

g(x) = [g1(x)− c1 g2(x)− c2 . . . gN(x)− cN ]
T , the Lagrangian functional can be defined as

L(x,λ ) = f (x)−λ1(g1(x)− c1)− . . .−λN(gN(x)− cN) = f (x)−λ
T g(x),

and the same procedure can be applied.

5.3 Karush Kuhn Tucker Conditions for General Constraints
Karush Kuhn Tucker (KKT) conditions are a generalization of the Lagrange multiplier idea. They
provide necessary conditions for a point to be the solution of an optimization problem which
includes a set of equality constraints and a set of inequality constraints. The system of equations
and inequalities corresponding to the KKT conditions is usually not solved directly, except in
the few special cases where a closed-form solution can be derived analytically. In general, many
optimization algorithms can be interpreted as methods for numerically solving the KKT system of
equations and inequalities.

5.3.1 Overview of KKT Conditions
Assume that we wish to optimize

Find argmin f (x)
such that gi(x)≤ 0, i = 1 . . .N

and h j(x) = 0, j = 1 . . .M
(5.3.1)

Based on (5.3.1), we form the vectors g(x) = [g1(x) . . . gN(x)]T and h(x) = [h1(x) . . . hM(x)]T .
The Lagrangian function is defined as

L(x,λ ,µ) = f (x)−λ
T g(x)−µ

T h(x)
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Then the solution candidates must be looked in the set of the solutions of ∇L = 0. If x∗ is a local
minimum, under regularity conditions (independance of the gradients’ contraints, for example),
then there exists a λ

∗ and a µ∗ such that

∇ f (x∗) = (λ ∗)T g(x)+(µ∗)T h(x) (5.3.2)

Equation (5.3.2) provides a system to solve numerically, which returns a set of possible solutions.

5.3.2 Numerical Example
We will solve numerically the following optimization problem:

argminx(x−1)(x+1)
s.t. x≥ 0,
sin(2πx) =−0.5

Figure 5.3.1 represents the cost function and the equality constraint sin(2πt)−0.5 = 0. A quick
glance at the graph shows that the solution should lie between 0.5 and 1, as the solution we wish
is one of the root of the raised sine. Note that we took into account the inequality constraint
by only plotting the relevant part of the graph. In order to solve this numerically, we use the

Figure 5.3.1: Graph of the cost function f (blue) and the constraint equality (red).

function scipy.optimize.minimize, which allows to take into account boundaries, linear and non
linear constraints, inequalities and equalities altogether. We define the function, the constraint and
the bound as follows:

1 my_bounds = [ [ 0 , np . i n f ] ]
2

3 d e f my_func t i on ( x ) :
4 r e t u r n x [ 0 ] ∗ ( x [0]−1) ∗ ( x [ 0 ] + 1 )
5

6 d e f my_jac ( x ) :
7 r e t u r n 2∗x [ 0 ]∗ x [0]−1
8

9 d e f m y _ c o n s t r a i n t ( x ) :
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10 r e t u r n np . s i n (2∗ np . p i ∗x [ 0 ] ) +0 .5
11

12 cons = { ’ t y p e ’ : ’ eq ’ , ’ fun ’ : m y _ c o n s t r a i n t }

Listing 5.3: Definition of the constraints

Then we run the minimizer:

1 r e s = o p t . min imize ( my_func t ion , [ 0 . 7 ] , bounds=my_bounds , c o n s t r a i n t s =cons , j a c =
my_jac )

2 p r i n t ( r e s )

The output of the previous lines is

fun: -0.3848379629816655
jac: array([-0.31949638])

message: ’Optimization terminated successfully.’
nfev: 6
nit: 4

njev: 4
status: 0

success: True
x: array([0.58333333])

The returned solution is close to the true optimum. The reader will find in the official documentation
of scipy a more detailed examples.

5.4 The ADMM for Linear/Quadratic Constraints
The alternating direction method of multipliers (ADMM) is an algorithm that solves convex
optimization problems by breaking them into smaller pieces, each of which are then easier to
handle. It has recently found wide application in a number of areas, from optics to signal processing.
ADMM is used in a large number of papers at this point, so it is impossible to be complete in only
one paragraph.

5.4.1 Mathematical Description
The algorithm solves problems of the form

argmin f (x)+g(z)
such that Ax+Bz = c

where x ∈ Rn, z ∈ Rm, c ∈ Rp, , and A, B are matrices with suitable dimensions.
To solve this problem, we introduce the “augmented Lagrangian”, which takes both from Lagrange
multipliers and proximal methods:

Lµ(x,z,λ ) = f (x)+g(z)+λ
T (Ax+Bz− c)+

µ

2
‖Ax+Bz− c‖2

2 (5.4.1)

ADMM can be understand as iterating the optimization one variable after the other in (5.4.1), until
the algorithm convergences to a local minimizer:


x(k+1) = argmin

x
Lµ(x,z(k),λ (k))

z(k+1) = argmin
z

Lµ(x(k+1),z,λ (k))

λ
(k+1) = λ

(k)+µ(Ax(k+1)+Bz(k+1)− c)

(5.4.2)
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It is common to scale the problem in practice, in order to get shorter formulae. if we define the

residual r = Ax+Bz− c, we get λ
T r+

µ

2
‖r‖2

2 =
µ

2
‖r+u‖2

2−
µ

2
‖u‖2

2, where we define u =
1
µ

λ .

Therefore, (5.4.2) becomes:

x(k+1) = argmin
x

{
f (x)+

µ

2
‖Ax+Bz(k)− c+u(k)‖2

2

}
z(k+1) = argmin

z

{
g(z)++

µ

2
‖Ax(k+1)+Bz− c+u(k)‖2

2

}
u(k+1) = u(k)+µ(Ax(k+1)+Bz(k+1)− c)

(5.4.3)

We refer to [2] for an description of the conditions which guarantee the convergence of the algorithm
to a local minimum. In general, ADMM is used for cases when modest accuracy is sufficient for
the problem at hand. As for most iterative algorithms, a stopping criterion must be provided for
(5.4.3)by the user for practical use. Define the following quantities:

r(k) := Ax(k)+Bz(k)− c

s(k) := µAT B(z(k)− z(k−1))

εp :=
√

pεabs + εrel max{‖Ax‖2,‖Bz‖2,‖c‖2} (5.4.4)

εd :=
√

nεabs + εrel‖AT
λ‖2, (5.4.5)

where in (5.4.4) and (5.4.5), εabs and εrel are absolute precision and relative precision are specified
by the user, n is the dimension of x, p is the number of rows in A. [2] recommends the following
choices as stopping criteria:

‖r(k)‖2 ≤ εp, ‖s(k)‖2 ≤ εd

Obviously, (5.4.3) is of interest only if the first two steps are numerically solvable. In several cases
of interest, this will be the case. Recall that the proximal operator of any function was defined
in (4.5.2) as

proxg(v) = argmin
x

{
g(x)+

1
2
‖x−v‖2

2

}
.

So, in practice, when matrices A and B reduce to identity, the first two steps of one ADMM iteration
can be seen as the computation of two proximal operators, which can be in many applications
solvable.

5.4.2 Object Oriented Programming: my ADMM in a Box
We will implement the ADMM inside a class, to grasp some concepts of object oriented program-
ming. For simplicity, we will program it when the objective function is quadratic, in order to
use closed-form terms when possible for steps 1 and 2 of (5.4.3). Roughly speaking, a class is a
way to encapsulate variables and functions inside a “box”, which has the advantage of modularity,
reuseability and makes the code easier to maintain. The solver will need inputs set by the user,
namely: A, B, c, f , g, µ , εabs and εrel . The class will also have inner variables x, z, λ . The methods
(functions included in the class) will do the following:

1. compute the first step, either in closed form or using a scipy solver.
2. compute the second step, either in closed form or using a scipy solver.
3. Update the auxiliary variable
4. Check whether the stopping criterion has been attained; if so, stop the solver, if not, iterate

The general architecture of the class we wish to program is as follows:
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1 c l a s s ADMM_quadrat ic_solver :
2 i m p o r t numpy as np
3 i m p o r t s c i p y . o p t i m i z e as o p t
4 d e f _ _ i n i t _ _ ( s e l f , A, B , c , P , mu , t y p e _ p e n a l t y =[ ’ l a s s o ’ , 0 . 1 ] , t o l _ a b s = 0 . 1 ,

t o l _ r e l = 0 . 0 1 , m a x _ i t e r = 1000) :
5 s e l f .A = A
6 s e l f . B = B
7 s e l f . c = c
8 s e l f . P = P
9 s e l f . t y p e _ p e n a l t y = t y p e _ p e n a l t y

10 s e l f . mu = mu
11 s e l f . t o l _ a b s = t o l _ a b s
12 s e l f . t o l _ r e l = t o l _ r e l
13 s e l f . m a x _ i t e r = m a x _ i t e r
14 # I n i t i a l i z e s t h e v a r i a b l e s t o z e r o
15 s e l f . x = np . z e r o s ( (A. shape [ 1 ] , 1 ) )
16 s e l f . z = np . z e r o s ( ( B . shape [ 1 ] , 1 ) )
17 s e l f . u = np . z e r o s ( (A. shape [ 0 ] , 1 ) )
18 s e l f . e p s _ p r i m a l = np . I n f
19 s e l f . e p s _ d u a l = np . I n f
20

21 d e f g e t _ s o l u t i o n ( s e l f ) :
22 r e t u r n [ s e l f . x , s e l f . z , s e l f . u ]
23

24 d e f compute_step1_ADMM ( s e l f ) :
25 #
26 # INCLUDE THE CODE HERE
27 #
28

29 d e f compute_step2_ADMM ( s e l f ) :
30 #
31 # INCLUDE THE CODE HERE
32 #
33

34

35 d e f compute_step3_ADMM ( s e l f ) :
36 #
37 # INCLUDE THE CODE HERE
38 #
39

40

41 d e f c h e c k _ s t o p p i n g _ c r i t e r i o n ( s e l f , r e s i d u a l _ p r i m a l , r e s i d u a l _ d u a l ) :
42 #
43 # INCLUDE THE CODE HERE
44 #
45

46 d e f s o l v e ( s e l f ) :
47 #
48 # INCLUDE THE CODE HERE
49 #

Listing 5.4: General architecture of the ADMM class

The reader can fill the functions based on the following case study, or during the working session
on the dedicated Jupyter notebook.
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5.5 Case Study: Variations on the Least-Square Estimate
Least square estimate is often used for regression purposes in the field of machine learning and
statistical inference. We aim to solve the following problem:

argmin
{1

2
‖y−Ax‖2

2 + rPen(x)
}

(5.5.1)

where in (5.5.1) y is a signal of interest, A is a dictionary of basic shapes, and Pen is a penalty put
on the regressor x. The signal we want to investigate is a sample of an ECG recording, displayed in
Figure 5.5.1. Our objective is to locate the peaks in this signal. In order to do so, we will use a `1

Figure 5.5.1: Part of the ECG recording of interest

driven penalty, namely
Pen(x) = ‖Fx‖1.

We will investigate LASSO (F = I). The optimization problem will be solved using ADMM.
Indeed, if the objective function f is a quadratic function (as it is the case in regression problems)

f (x) =
1
2

xT PT Px+qT x+ r,

then it can be shown that

argmin
x

{
f (x)+

µ

2
‖x−v‖2

2

}
= (I+µPT P)−1(µPT v−q)

In our case

f (x) =
1
2

yT y− 1
2

yT Ax− 1
2

xT AT y+
1
2

xT AT Ax =
1
2

xT AT Ax−yT Ax+
1
2

yT y,

so the first step of the ADMM can be easily computed with

P = A, q =−AT y, r =
1
2

yT y

For LASSO, the second step of ADMM can also be computed explicitely as

max(x− r/ρ,0)−max(−x− r/ρ,0)

The code for ADMM for LASSO is displayed below.
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1 d e f ADMM_for_generalized_LASSO ( d i c t i o n a r y , F , s i g n a l , s p a r s i t y _ p a r a m e t e r ,
admm_parameter , t o l _ x = 0 . 1 , t o l _ y = 0 . 1 , m a x _ i t e r =1000) :

2

3 # x , z , u a r e i n i t i a l i z e d randomly
4 x = np . random . rand ( d i c t i o n a r y . shape [ 1 ] , 1 )
5 z = np . random . rand ( d i c t i o n a r y . shape [1]−1 ,1)
6 u = np . random . rand ( d i c t i o n a r y . shape [1]−1 ,1)
7

8 # Big c o m p u t a t i o n s must be done o u t s i d e t h e loop − THIS IS HUGE !
9 M = np . d o t ( d i c t i o n a r y . T , d i c t i o n a r y ) + admm_parameter ∗ np . d o t ( F . T , F )

10 i nve r se_AF = np . l i n a l g . i n v (M)
11 ATy = np . d o t ( d i c t i o n a r y . T , s i g n a l )
12

13 s t o p p i n g _ c r i t e r i o n 2 = np . l i n a l g . norm ( s i g n a l−np . d o t ( d i c t i o n a r y , x ) )
14 p r i n t ( ’ x _ e r r = 0 , y _ e r r = {} ’ . f o r m a t ( s t o p p i n g _ c r i t e r i o n 2 ) )
15

16 f o r c u r r e n t _ i t e r i n np . a r a n g e ( m a x _ i t e r ) :
17 x_o ld = np . copy ( x )
18

19 vec = ATy + admm_parameter ∗ np . d o t ( F . T , z−u )
20 x = np . d o t ( inverse_AF , vec )
21

22 vec = np . d o t ( F , x ) + u
23 t h r e s h = s p a r s i t y _ p a r a m e t e r / admm_parameter
24 z = ( ( np . abs ( vec ) − t h r e s h ) >0) ∗ ( np . abs ( vec )− t h r e s h ) ∗ np . s i g n ( vec )
25

26 u = np . d o t ( F , x ) + u − z
27

28 p r i n t ( ’ i t e r a t i o n {} / {} ’ . f o r m a t ( c u r r e n t _ i t e r , m a x _ i t e r ) )
29 s t o p p i n g _ c r i t e r i o n = np . l i n a l g . norm ( x−x_o ld )
30 r e s i d u a l = np . l i n a l g . norm ( s i g n a l−np . d o t ( d i c t i o n a r y , x ) )
31 s t o p p i n g _ c r i t e r i o n _ 2 = r e s i d u a l
32 p r i n t ( ’ x _ e r r = {} , y _ e r r = {} ’ . f o r m a t ( s t o p p i n g _ c r i t e r i o n ,

s t o p p i n g _ c r i t e r i o n _ 2 ) )
33

34 i f s t o p p i n g _ c r i t e r i o n < t o l _ x or s t o p p i n g _ c r i t e r i o n _ 2 < t o l _ y :
35 b r e a k
36

37 i f c u r r e n t _ i t e r == m a x _ i t e r :
38 p r i n t ( ’ The maximum number o f i t e r a t i o n s a l l o w e d has been r e a c h e d .

R e s u l t may be i m p r e c i s e ’ )
39

40 r e t u r n [ x , z , u ]

Listing 5.5: ADMM for LASSO penalized regression

To obtain the figures displayed in this chapter, we made use of data saved in a Matlab file, as
follows:

1 i m p o r t numpy as np
2 i m p o r t s c i p y . i o as s i o
3 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
4 m a t l a b _ d a t a = s i o . l oadma t ( ’ ECG_data . mat ’ )
5 d i c t i o n a r y = m a t l a b _ d a t a [ ’B ’ ]
6 s i g n a l = m a t l a b _ d a t a [ ’ sample_ECG ’ ]
7 s i g n a l = s i g n a l . T
8

9 F = np . eye ( 6 0 1 , 6 0 2 )
10 r e s = ADMM_for_generalized_LASSO ( d i c t i o n a r y , F , s i g n a l , 0 , 10 , t o l _ x = 0 . 0 1 ,

t o l _ y = 900)
11 r e s 2 = ADMM_for_generalized_LASSO ( d i c t i o n a r y , F , s i g n a l , 100 , 10 , t o l _ x = 0 . 0 1 ,

t o l _ y = 900)
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Figure 5.5.2 illustrates the results obtained with Ordinary Least Squares (OLS) estimate. The
approximation of the signal can be very good, however we can make very little use of the regressor
to locate the peaks, particularly if the signal is noisy.

Figure 5.5.2: Left: original signal and OLS approximation. Right: OLS regressor

On the other hand, we can see that the LASSO provides a regressor which can be expoited to find
the pulses efficiently, since it enforces the sparsity of the regressor. We encourage the reader to use
the Jupyter notebook associated with this chapter to experiment with the different parameters of the
provided function.

Figure 5.5.3: Left: original signal and LASSO approximation. Right: LASSO regressor

5.6 Further Readings
As aforementioned, the book [3] is a goldmine to further investigate the mathematical aspects of
convex optimization, constrained of not. It further presents useful algorithms in the third part of the
book. For further, modern, insights on proximal methods and ADMM, we refer to [5] and [2] for a
friendly, engineering-driven, presentation of these methods.
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6. Parametric Estimation in a Nutshell

6.1 Fear of the Dark

In numerous experiments, it is common to model the observations by means of a mathematical
model. For example, we may model the ECG pulse repartition in a signal by a point process, the
electrical signal recorded from a muscle as a function of the sensor resistivity, and so forth.
The common assumption in the framework of frequentist inference is the existence of a “true”
model, under which the data are generated 1. It is therefore necessary to get several observations
from this model, in order to perform on it inference, that is finding a relevant model among many.
Statistics is the field of mathematics which provides the tools required for inference (also called
estimation), and it is obviously an important topic for all engineers in any field.

6.2 Estimation Theory, Parametric, Non-parametric, Semi-parametric

Statistical estimation can be performed in three ways: under a parametric setting, in which we
assume that the model depends on a finite dimensional parameter θ ∈ Rn; In that case, we aim to
estimate θ .

� Example 6.1 — Parametric estimation. We assume that the grades in a class are ditributed
according to a Gaussian distribution. Under this assumption, we wish to estimate the average µ and
the standard deviation σ in order to fully characterize the model. Therefore θ = (µ,σ). �

In a non-parametric setting, we assume that the data distribution has some regularity functional
properties, but we don’t assume that it depends on a parameter. Semiparametric approaches perform
inference on a partly parametric model, while reducing the influence of a nuisance contribution,
possibly non parametric. We will focus in this chapter on the parametric approach.

Definition 6.2.1 — sample. A statistical sample will be defined as a sequence of n independent
and identically distributed (i.i.d.) random variables X1, X2, . . . , Xn, with common distribution
f (·;θ) depending on a parameter θ ∈ Rn.

1This approach differs from the Bayesian paradigm, in which data rather influence the degree of belief we put on a
given prior model.
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6.3 Basics of Parametric Estimation
Since samples are assumed to be i.i.d., the joint distribution of the vector (X1,X2, . . . ,Xn) is known
and is equal to

f (x1,x2, . . . ,xn;θ) =
n

∏
k=1

f (xk;θ) .

We provide here a series of definition which shall be used along the whole chapter.

Definition 6.3.1 — Estimator. An estimator of θ is a random variable defined as a functional
of the sample (X1,X2, . . . ,Xn), and is denoted by θ̂(X1,X2, . . .Xn), or more shortly θ̂ .

Remember the an estimator is a random variable, and therefore its numeral value is strongly
dependent on the sample itself.

� Example 6.2 Assume that we dispose of a sample Xa,X2, . . .Xn i.i.d with common distribution
U([0,θ ]). We can suggest as an example two estimators of θ :

1. θ̂1 =
2
n

n

∑
k=1

Xk

2. θ̂2 = max
1≤k≤n

Xk

Both approaches are legitimate, but the second estimate should be preferred in practice (as an
exercise: why?) �

Definition 6.3.2 — Unbiased estimator. The bias of an estimator θ̂ is defined as

bias(θ̂) = E(θ̂ −θ).

When E(θ̂) = θ , we shall that the estimator θ̂ is unbiased.

Unbiasedness only states that the average value of an estimate (should we repeat the experiments)
is close to the true value of the estimator. It does not say that the estimate is close to the true value
of θ (here, the sample size is fixed, and the number of experiments is large).

Definition 6.3.3 — Consistent estimator. The estimator θ̂ is consistent is it converges in
probability to θ as the sample size n tends to infinity:

∀ε > 0, P(|θ̂ −θ |> ε)−→ 0 as n→ ∞.

Consistency is an important property, in the sense that it defines a “good” estimator of the parameter
of interest. It is a guarantee that the numerical value of the estimator is close to the true value,
provided the sample size is large enough (here, the sample size tends to infinity, while the number
of experiments equals one).

Definition 6.3.4 — Asymptotically normal estimator. A consistent estimator θ̂ is said to be
asymptotically normal when

√
n(θ̂ −θ) converges in distribution to a normal distribution.

Asymptotic normality states that the distribution of the estimator’s values around the true value is
normally distributed, with a variance decreasing to 0 with a

√
n rate.

� Example 6.3 We would like to check numerically if the estimators defined in the previous
example verify the aforementioned properties.

1 i m p o r t numpy as np
2 i m p o r t numpy as np
3 i m p o r t s c i p y . s t a t s
4 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
5 i m p o r t pandas as pd
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6 i m p o r t s e a b o r n as s n s
7

8 # t h e n u m e r i c a l t r u e v a l u e o f t h e t a i s d e f i n e d
9 t r u e _ t h e t a = np . p i

10 nb_exp = 100
11 s a m p l e _ s i z e = 10000
12 d a t a = np . random . un i fo rm ( low =0 , h igh = t r u e _ t h e t a , s i z e =( nb_exp , s a m p l e _ s i z e ) )
13

14 s a m p l e _ s i z e s = np . m a t l i b . r epmat ( np . a r a n g e ( 1 , s a m p l e _ s i z e +1) , nb_exp , 1 )
15 # Th i s e s t i m a t o r i s t h e sample mean t i m e s 2
16 e s t i m a t o r _ 1 = 2∗np . cumsum ( da t a , a x i s =1) / s a m p l e _ s i z e s
17

18 # Th i s computes t h e max e s t i m a t o r
19 e s t i m a t o r _ 2 = np . z e r o s ( d a t a . shape )
20 e s t i m a t o r _ 2 [ : , 0 ] = d a t a [ : , 0 ]
21 f o r k i n np . a r a n g e ( 1 , s a m p l e _ s i z e ) :
22 e s t i m a t o r _ 2 [ : , k ] = np . amax ( d a t a [ : , 0 : k ] , a x i s =1)
23

24 p l t . p l o t ( e s t i m a t o r _ 1 . T )
25 p l t . p l o t ( np . a r a n g e ( 1 0 0 0 0 ) , t r u e _ t h e t a ∗ np . ones ( ( s a m p l e _ s i z e , ) ) , ’ k−−’ , l i n e w i d t h

=3)
26 p l t . y l im ( ( 2 . 5 , 3 . 5 ) )
27 p l t . x l im ( ( 0 , s a m p l e _ s i z e ) )
28 p l t . x l a b e l ( ’ Sample s i z e ’ )
29 p l t . y l a b e l ( ’ E s t i m a t o r v a l u e ’ )
30 p l t . g r i d ( )
31 p l t . s a v e f i g ( ’ c h 6 _ e s t i m a t o r 1 _ g r a p h . pdf ’ )
32 p l t . show ( )
33 p l t . p l o t ( e s t i m a t o r _ 2 . T )
34 p l t . p l o t ( np . a r a n g e ( 1 0 0 0 0 ) , t r u e _ t h e t a ∗ np . ones ( ( s a m p l e _ s i z e , ) ) , ’ k−−’ , l i n e w i d t h

=3)
35 p l t . y l im ( ( 3 , 3 . 2 ) )
36 p l t . x l im ( ( 0 , s a m p l e _ s i z e ) )
37 p l t . x l a b e l ( ’ Sample s i z e ’ )
38 p l t . y l a b e l ( ’ E s t i m a t o r v a l u e ’ )
39 p l t . g r i d ( )
40 p l t . s a v e f i g ( ’ c h 6 _ e s t i m a t o r 2 _ g r a p h . pdf ’ )
41 p l t . show ( )
42

43 # i m p o r t a s a pandas d a t a f r a m e t h e l a s t v a l u e s o f t h e e s t i m a t e
44 d a t a _ e s t 1 = pd . DataFrame ( np . s q r t ( s a m p l e _ s i z e ) ∗ ( e s t i m a t o r _ 1 [ : , −1 ] − t r u e _ t h e t a

) )
45 s n s _ p l o t = s n s . d i s t p l o t ( d a t a _ e s t 1 , b i n s =20)
46 f i g = s n s _ p l o t . g e t _ f i g u r e ( )
47 f i g . s a v e f i g ( ’ c h 6 _ e s t 1 _ a n . pdf ’ )
48

49 # i m p o r t a s a pandas d a t a f r a m e t h e l a s t v a l u e s o f t h e e s t i m a t e
50 d a t a _ e s t 2 = pd . DataFrame ( np . s q r t ( s a m p l e _ s i z e ) ∗ ( e s t i m a t o r _ 2 [ : , −1 ] − t r u e _ t h e t a

) )
51 s n s _ p l o t = s n s . d i s t p l o t ( d a t a _ e s t 2 , b i n s =20)
52 f i g = s n s _ p l o t . g e t _ f i g u r e ( )
53 f i g . s a v e f i g ( ’ c h 6 _ e s t 2 _ a n . pdf ’ )

Listing 6.1: Numerical checks on previous estimates

�

The graphs obtained by executing the previous script are displayed in Figure 6.3.1 for the first
estimator, based on the sample mean, and in Figure 6.3.2 for the maximal value estimator.
From the previous investigation, we can conclude that there exists a strong belief that both estimators
are consistent, that the sample mean based estimator is asymptotically normal, while the maximum
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Figure 6.3.1: Numerical investigation of consistency (left) and asymptotic normality (right) for the sample
mean based estimator.
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Figure 6.3.2: Numerical investigation of consistency (left) and asymptotic normality (right) for the maximum
based estimator.

based estimator is not (as an exercise: why what this last point trivial to guess?). We can also have a
strong belief that the first estimator is unbiased, while the second is not, while being asymptotically
unbiased.
Note that asymptotic normality, though it explains the behavior of the estimator with respect to the
data sample size, is not a necessary condition to attain: in practice, the second estimator should be
preferred due to its much smaller variance.

6.4 The Maximum Likelihood Estimator

6.4.1 Definition
Considering the sample of observations (X1,X2, . . . ,Xn) at hand, we can consider the functional

n

∏
k=1

f (xk;θ) as a function of θ only, since the values of xk are given by the observations.

Definition 6.4.1 — likelihood and log-likelihood function. We define the likelihood function
as

L (θ) =
n

∏
k=1

f (xk;θ),

and the log-likelihood function as

`(θ) =
n

∑
k=1

log f (xk;θ),
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In the likelihood function, we invert the role of θ and the Xi’s: the observations are considered
fixed (which is conform to their inherent significance of observations - they do not vary once the
experiment is finished), whereas θ varies. In that matter ` provides a degree of confidence on a
given value θ , given the recorded observed: the higher ` is, the most likely θ is close to the true
value of the unknown parameter. Based on this considerations, the maximum likelihood estimator
(MLE) is defined as

θ̂MLE = argmax
θ

`(θ)

� Example 6.4 Going back the i.i.d sample distributed according to U(0,θ), we can compute
analytically the likelihood as

L (θ) =

{
0 if θ < max(X1,X2, . . .Xn)
1

θ n if θ ≥max(X1,X2, . . .Xn)

and observe that this function is non-decreasing in the second case. Thus, the MLE is equal to
θ̂MLE = max(X1,X2, . . .Xn). �

Note that in many cases (such that in a multivariate setting), the MLE is not easily computable.
When confronted to such a case, we perform the optimization numerically, either as described in
the previous chapter, or by using a stochastic optimization approach.

6.5 Example: Monte-Carlo Method for Numerical Integration
Monte-Carlo methods are powerful techniques to perform numerical optimization and integration,
they are part of a large class of stochastic algorithms, largely used in inference. In this Python
example, we shall use a Monte-Carlo method to estimate numerically an integral, and compare it to
a regular numerical integration.

6.5.1 Problem Overview
Let us assume that we wish to integrate

I =
∫

∞

0
f (x)dx, f (x) =

e−2x

1+(x−1)4

This integral clearly converges to a finite value, though there is no existing closed-form of the
integral’s solution. Thus, we want to estimate this value numerically.

6.5.2 Vanilla Numerical Integration
Since we have a close-form for the integrand, the fast way to approximate this integral would be by
numerical integration, using for example a trapezoid approximation:

I ≈
∞

∑
k=0

( f (xk)+ f (xk+1)(xk+1− xk)

2
,

where xn is a grid of points taken from the x-axis.
The code for numerical integration is displayed below:

1 i m p o r t numpy as np
2 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
3

4 d e f my_func t i on ( x ) :
5 r e t u r n np . exp (−0.5∗x ) / ( 1 + ( x−1) ∗∗4)
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6

7 x = np . a r a n g e ( 0 , 1 0 0 , 1 )
8 y = my_func t i on ( x )
9 I1 = np . t r a p z ( y , x )

Listing 6.2: Numerical Integration Using the Trapeze Method

The obtained numerical value is 1.05. We can refine the grid by either taking more point, or taking
a larger domain of integration (however, this function descreases fast to 0, so the last idea has
little chance to work). The values obtained after refining the grid are close to 1.15927. All in all,
deterministic numerical integration works; however:
• We need to define manually the inf value (and we might be wrong about it)
• We need to define manually the grid size (too small = bad approximation, too large = waste

of computations)

6.5.3 Ordinary Monte-Carlo Integration
The idea underneath Monte Carlo integration is that any integral can be seen as the expectation of
the functional of a random variable. Let’s say that we approximate I by the integral from 0 to 10,
then ∫ 10

0

e−0.5x

1+(x−1)4 dx = 10E
(

e−0.5U

1+(U−1)4

)
,

where U ∼ U([0,10]) is a uniform random variable on [0,10]. The Law of Large Numbers
guarantees the convergence of the empirical mean to the expectation in that case, so the algorithm is

1. draw a sample U1,U2, . . . of n uniform random variables in [0,10]
2. approximate

I ≈ 10
n

n

∑
k=1

e−0.5Uk

1+(Uk−1)4

The Python code is as follows:

1 i m p o r t numpy as np
2 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
3

4 d e f my_func t i on ( x ) :
5 r e t u r n np . exp (−0.5∗x ) / ( 1 + ( x−1) ∗∗4)
6

7 d e f v a n i l l a _ M C _ f o r _ m y _ f u n c t i o n ( s a m p l e _ s i z e =100 , upper_bound =10) :
8 # draw t h e samples
9 sample = 10∗np . random . random ( s a m p l e _ s i z e )

10 v a l u e s = my_func t i on ( sample )
11 r e t u r n 10∗np . mean ( v a l u e s )

Listing 6.3: Standard Monte Carlo Integration

Results for up to 10000 iterations of the Monte Carlo integration are displayed in Figure 6.5.1.
In all cases, the estimator converges to the true value of the integral. Since it is a stochastic approach,
convergence also depends on the samples drawn.

6.5.4 Refining Results With Importance Sampling
Note that in the previous method, we did not need to specify a grid for integration. However, there
is a larger variance in the result, and it still requires lots of points and an upper limit.
Thus, we use the fundamental idea of importance sampling: we can observe that

I =
∫

∞

0

e−0.5x

1+(x−1)4 dx = 2E
(

1
1+(X−1)4

)
,
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Figure 6.5.1: Convergence of the Monte Carlo integral estimator for up to 10000 iterations and three runs.

where X ∼ Exp(0.5) is distributed according to an exponential distribution. More generally, if we
write ∫

f (x)dx =
∫ f (x)

g(x)
g(x)dx = Eg( f (X)/g(X)),

we get a flexible method which can be used to evaluate improper integral with less iterations. The
code is as follows:

1 i m p o r t numpy as np
2 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
3

4 d e f my_func t i on ( x ) :
5 r e t u r n np . exp (−0.5∗x ) / ( 1 + ( x−1) ∗∗4)
6

7

8 d e f IS_MC_for_my_funct ion ( s a m p l e _ s i z e =100 , upper_bound =10) :
9 # draw t h e samples

10 sample = np . random . e x p o n e n t i a l ( s c a l e =2 , s i z e = s a m p l e _ s i z e )
11 v a l u e s = 1 / ( 1 + ( sample −1) ∗∗4)
12 r e t u r n 2∗np . mean ( v a l u e s )

Listing 6.4: Standard Monte Carlo Integration

Results for up to 10000 iterations of the Monte Carlo integration are displayed in Figure 6.5.2.
Importance sampling allows to reduce significantly the variance of the integral estimator, thus we
can rely on less samples and obtain a more precise result than by means of regular Monte Carlo
method.

6.6 Further Readings
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Figure 6.5.2: Convergence of the Monte Carlo integral estimator for up to 10000 iterations and three runs.



7. Machine Learning for Biomedical Applications

7.1 21st Century Digital Boy

This is no surprise: data has become an integral part of the engineering world. With the emergence
of new tools for data processing, the field of machine learning has gained momentum in the last
twenty years. This chapter will present basic concepts of machine learning and the use of the
scikit-learn Python library to address machine learning problem.
This chapter has not the pretention to cover everything: a full book would not be enough to cover
all the material exhaustively. The objective is rather to get a coarse understanding of the main ideas
of machine learning, and to implement several ideas efficiently.

7.1.1 What is Machine Learning? (ML)
In its essence, Machine Learning (ML) is a change of paradigm in computer programming. A
simple computer program (say, which sorts arrays of number from the smallest to the largest) obeys
to a set of rules which are determined at the developement stage by the programer. We will refer to
this as hard-coding approach. Hard-coding is fine as long as the problem is finite in its dimensions,
and addresses tasks which may be easlity automated.
Let us consider now a more complex task, which is to identify an obstacle on a driveway in real
time, or to recognize a target for a prosthetics. Obstacles may have different shapes, sizes, colors,
and it is unlikely that looking at all the possible options manually and taking them into account in
the programming stage will be efficient. On the other hand, a human being can solve such problems
in a very easy way, based on a set of rules he learned during his lifetime.
In a sense, ML programming (or, at least, supervised ML programming), aims to mimic the human
behavior by a change of paradigm, as shown in Figure 7.1.1.
More specifically, we provide to the computer a set of inputs and expected results, and we wish to
obtain a given set of rules learned by means of an algorithm, and leave the decision to the computer.
Since the learning itself is based on some randomness (appearing in optimization, learning stages,
noise, etc.), we cannot expect a deterministic output as in the hard-coding appraoch; for example,
the same algorithm trained on the same data twice can provide different answers to the same
problem. Obviously, we aim to minimize this type of error, as well as to maximize the efficiency of
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Figure 7.1.1: Differences between hard-coding (left) and ML (right)

the rules learned.

7.1.2 What is not ML?

Though machine learning techniques achieve impressive results in numerous tasks, it is important
to understand each method’s limitations and to put expectations too high: ML is still an active
research topic. Consequently, we developing an ML pipeline, we should always keep in mind the
following:
• ML find features, it does not interpret them: current supervised methods make wonders

finding objects of interest in images, but cannot explain why they are here in the first place.
• ML algorithms infer, but cannot extrapolate: they learn what they have been taught to learn,

no more, no less.
• ML has no ultimate tool: although deep learning has taken most of the scene in terms of

results, they require lots of data and lots of computation power. Several concurrent approaches
should be investigated when lacking data
• ML is not AI, only a subset
• Deep Learning is not ML, only a subset.

7.1.3 Examples of ML Tasks

A learning problem is usually based on a data set, and tries to predict properties of unknown
additional data. This learning is based on inner properties of the data, which are either learned or
extracted. These inner properties are called features. A supervised learning algorithm provides a
rule of decision based on what he learned. An unsupervised learning algorithm provides ways to
characterize the data, and has a more exploratory meaning. Reinforcement learning, a more recent
branch of ML, aims to improve a learning algorithm performances based on the environment. By
providing a reward function at the end of the prediction, the algorithm can learn a series of action
to maximize a reward.
For supervised learning, we can distinguish several tasks:
• Regression: If the rule of decision is a continuous function, the problem is called a regression

problem.
• Classification: If the rule of decision is a discrete valued function, the problem is called a

classification problem.
For unsupervised learning, the objectives would be to find similarities inside unlabelled datasets
(Clustering), or to determine the distribution of the data (Density Estimation), or either to extract
features of interest in this dataset (Dimensionality Reduction / Compression).

7.1.4 Different Types of ML

7.2 Standard ML Pipeline

An usual pipeline in the development of ML algorithms is presented in Figure 7.2.1. We detail each
stage below.
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Figure 7.2.1: A standard supervised machine learning pipeline - Deep learning merges preprocessing and
training altogether.

7.2.1 Data Organization

The preliminary steps of data organization is often neglected by praticioners who are already
working on existing datasets. Yet, from all points of view, this step is crucial.

For the sake of the argument, let’s say that we wish to classify CT scans provided by an hospital
based on the fact that they show tumors or not. Assume that about 5% of the patients who made a
CT scan actually have a tumor. In that framework, a supervised method may provide a very high
precision rate; however, such classifier is useless: since most patients are healthy, a trained classifier
will be inclined to classify everyone as healthy, since by doing so it does not go wrong often.

Therefore, before going any further, it is essential to investigate the dataset (e.g. using unsupervised
techniques) in order to check that it is well suited for supervised learning. In particular, we should
check:

• The classes imbalance: if one class is over-represented, the results obtained by the algorithm
are not interpretable. Thus, all the classes should be well represented, with a sufficiently high
number of labels for all classes.
• Extra-class variance: if we train an object recognition to classify images of dogs and cats, we

are certain to do well, because the “objects” we wish to classify are different. Classifying
between a sunscreen or an umbrella is a most challenging task. Thus, classes should be as
separable as possible to maximize the precision.
• Inter-class variance: if we wish to classify between pop song and classical music pieces, but

train the classical music on Bach only, more recent classical music will be wrongly defined
as pop songs. Thus, a given class should exhibit some variability, in order to learn as many
features as possible.

Under the assumption that we have a “good” dataset at hand, the first thing to do is to split it into
three part: the training set, which will be used to train the model based on its labels, the validation
set, which will be used to optimize the parameters the model depends on (optimizing on the training
set might degrade the generalization capabilities of the model), and a test set, which will be used to
validate the model on data he doesn’t know to investigate if we trained a model generic enough.
Usually, the split is done based on the following 70%-train, 10%-validation, 20%-test, though other
choices are possible.
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7.2.2 Preprocessing
The preprocessing steps aim to simplify the data at hand, or to extract from the data the most
significant information (color, number of pixels,. . . ). Moreover, most ML algorithms require
the features to be on the same scale for optimal performances, so they have to be normalized.
Dimensionality reduction techniques can also be applied when features are very correlated or
redundant (this is often the case in images). This step yields faster algorithms running on less
storage space.
The deep training paradigm includes the feature extraction inside the learning procedure: the early
layers of the neural networks capture small features, whereas more complex features are captured
in the later stages of the neural network.

7.2.3 Training
For machines and humans, the learning process is the same: it comes with a cost. More specifically,
we need at first to establish a cost criterion under which we can evaluate the performances of
the model’s training. For example, for classification, precision as the proportion of correctly
classified data is often used for classification tasks. Most of the time, the training process relies on
minimizing the cost criterion chosen with the data, but this approach could also depend on several
intern parameters (regularization, sparsity, learning rate, etc.). The validation set can be used to
fine tune these parameters, so that the training set cannot have a bad influence on the parameter’s
choice.

7.2.4 Testing
As promising as it may be, a low cost value on training data is not very interesting per se. We
would rather like the trained model to generalize, that is provide accurate results for data which are
not included in the training set. At the end of the training, we perform an inference on the test set:
if predictions on the test set are accurate, it means that the model can generalize well. Otherwise,
other approaches and parameters in the training should be chosen.

7.2.5 Production
Once the model has been successfully tested, it is usually put in production for real-time use. At
this point, the inner parameters of the model are frozen, and are not to be changed again. The
work consists in looking at the prediction results the model provides, and if it fails to predicts
several instances of the data, it has to be retrained with an updated dataset. This last stage obviously
industrial, and is generally omitted while doing research in the field.

7.3 ML Using sklearn and Python
In this section, we will present several ML applications using the scikit-learn library (for approaches
which are not related to neural networks), and Keras/Tensorflow for neural networks approaches.

7.3.1 The Philosophy of sklearn
Before looking at some examples of Machine Learning algorithms, it is important to understand
how sklearn expects the data to be organized. In that matter, we will dig the Iris dataset:

1 i m p o r t p p r i n t a s pp
2 from s k l e a r n i m p o r t d a t a s e t s
3 i r i s _ d a t a s e t = d a t a s e t s . l o a d _ i r i s ( )
4 pp . p p r i n t ( t y p e ( i r i s _ d a t a s e t ) )
5 pp . p p r i n t ( i r i s _ d a t a s e t )

The obtained result is
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<class ’sklearn.utils.Bunch’>
{’DESCR’: ’.. _iris_dataset:\n’

’\n’
’Iris plants dataset\n’
’--------------------\n’
’\n’
’**Data Set Characteristics:**\n’
’\n’
’ :Number of Instances: 150 (50 in each of three classes)\n’
’ :Number of Attributes: 4 numeric, predictive attributes and the ’
’class\n’
’ :Attribute Information
.
.
.
’ conceptual clustering system finds 3 classes in the data.\n’
’ - Many, many more ...’,

’data’: array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3. , 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],

.

.

.

[6.2, 3.4, 5.4, 2.3],
[5.9, 3. , 5.1, 1.8]]),

’feature_names’: [’sepal length (cm)’,
’sepal width (cm)’,
’petal length (cm)’,
’petal width (cm)’],

’filename’: ’/usr/local/lib/python3.6/dist-packages/sklearn/datasets/data/iris.csv’,
’target’: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]),

’target_names’: array([’setosa’, ’versicolor’, ’virginica’], dtype=’<U10’)}

So, a dataset is stored in a Bunch class, which has the same shape than a dictionary. All classes IDs
and data are stored in Numpy arrays, as well as the names of the features and classes. The field
’data’ always has to be a Numpy array of size Number of samples×Number of features. It is clear
that only very small datasets can be fully stored in memory. In practice, we cannot do so, thus the
data needs to be prepared, for example using hdf5 files and XML files for information. This point is
crucial for deep learning applications, where training must be performed on thousands of differents
images, if not more.
Sklearn follows the procedure detailed in Figure 7.2.1. In this library, it is called a pipeline. A
pipeline is the concatenation of several operations included in sklearn, that we can use either for
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dimensionality reduction or training. A classifier or pipeline, once defined, is trained using the
method fit. Test/Validation is done using the method predict.

7.3.2 Learning Example 1: K-Nearest Neighbors and PCA
K-Nearest Neighbors (KNN) is the easiest method for unsupervised classification - it can be
summarized by the sentence “if in the k-nearest neighbors of an unknown input, there is a majority
of a given class, then the unknown input should be labelled as belonging to this majority class”.
This paradigm, though simple, allows to perform unsupervised classification fast to get insights on
the organization of the data.
On the first example, we’ll work on the Iris dataset. First, we’ll split the dataset between train and
test, and use KNN out of the box to classify the test data.

1 from s k l e a r n . n e i g h b o r s i m p o r t K N e i g h b o r s C l a s s i f i e r
2 from s k l e a r n i m p o r t d a t a s e t s
3 from s k l e a r n . m o d e l _ s e l e c t i o n i m p o r t t r a i n _ t e s t _ s p l i t
4 X, y = d a t a s e t s . l o a d _ i r i s ( r e t u r n _ X _ y =True )
5 X _ t r a i n , X_ te s t , y _ t r a i n , y _ t e s t = t r a i n _ t e s t _ s p l i t (X, y , s t r a t i f y =y , t e s t _ s i z e

= 0 . 5 , r a n d o m _ s t a t e =14)
6 knn = K N e i g h b o r s C l a s s i f i e r ( n _ n e i g h b o r s =5)
7 knn . f i t ( X _ t r a i n , y _ t r a i n )
8 knn . s c o r e ( X_ te s t , y _ t e s t )

Listing 7.1: KNN on the Iris dataset

The classification score obtained is close to 0.98, which means that classification is very efficient.
The reader can see the influence of the number of neighbors, which has to be carefully chosen, on
the Jupyter notebook of the chapter.
One might wonder whether dimensionality improves the classification in that case:

1 from s k l e a r n . p i p e l i n e i m p o r t P i p e l i n e
2 from s k l e a r n . d e c o m p o s i t i o n i m p o r t PCA
3

4 pca = PCA ( )
5 combined_pca_knn = P i p e l i n e ( s t e p s = [ ( ’ pca ’ , pca ) , ( ’ knn ’ , k n n _ c l a s s i f e r ) ] , v e r b o s e =

True )
6 combined_pca_knn . f i t ( X _ t r a i n , y _ t r a i n )
7 combined_pca_knn . s c o r e ( X_ te s t , y _ t e s t )

Here, dimensionality reduction helps little to none; this is no surprise, since the dimensions of the
features were very small from the very beginning.
For the Digits datasets (images of size 8×8), the same can be applied directly.

1 X, y = d a t a s e t s . l o a d _ d i g i t s ( r e t u r n _ X _ y =True )
2 X _ t r a i n , X_ te s t , y _ t r a i n , y _ t e s t = t r a i n _ t e s t _ s p l i t (X, y , t e s t _ s i z e = 0 . 3 )
3 knn = K N e i g h b o r s C l a s s i f i e r ( n _ n e i g h b o r s =21)
4 knn . f i t ( X _ t r a i n , y _ t r a i n )
5 knn . s c o r e ( X_ te s t , y _ t e s t )
6

7 pca = PCA ( )
8 combined_pca_knn = P i p e l i n e ( s t e p s = [ ( ’ pca ’ , pca ) , ( ’ knn ’ , knn ) ] )
9 combined_pca_knn . f i t ( X _ t r a i n , y _ t r a i n )

10 combined_pca_knn . s c o r e ( X_ te s t , y _ t e s t )

In both cases, the score is around 0.97, and PCA little helps (indeed, images of 64 pixels is already
a case of dimensionality reduced drastically...).

7.3.3 Learning Example 2: Classifying ECG pulses using a deep neural network
A neural network is a succession of linear and non-linear mappings, used to perform supervised
learning. For a more detailed description of neural networks, we refer to the companion course on
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deep learning from the BIOART consortium.
First, we load the data from the files

1 d a t a _ n o r m a l = np . g e n f r o m t x t ( ’ p tbdb_norma l . c sv ’ , d e l i m i t e r = ’ , ’ )
2 p r i n t ( d a t a _ n o r m a l . shape )
3 d a t a _ a b n o r m a l = np . g e n f r o m t x t ( ’ p tbdb_abnorma l . c sv ’ , d e l i m i t e r = ’ , ’ )
4 p r i n t ( d a t a _ a b n o r m a l . shape )

The sizes are

(4046, 188)
(10506, 188)

Thus, we see that we dataset is not completely balanced. Though we should either perform data
augmentation or split the dataset to keep approximately the same number of files for normal and
abnormal data, we will let the data unchanged. We then create a matrix which will include the data,
and a label (’1’ if the ECG is normal, ’0’ if it is abnormal). The rows of the matrix are then shuffled,
to guarantee that the split train/test works fine. The labels are changed to categorical data, so that
the softmax decision will be applied.

1 c o m p l e t e _ d a t a _ s e t = np . z e r o s ( ( d a t a _ n o r m a l . shape [ 0 ] + d a t a _ a b n o r m a l . shape [ 0 ] ,
d a t a _ n o r m a l . shape [ 1 ] + 1 ) )

2 c o m p l e t e _ d a t a _ s e t [ 0 : 4 0 4 6 , : −1 ] = d a t a _ n o r m a l
3 c o m p l e t e _ d a t a _ s e t [0 :4046 ,−1] = 1
4 c o m p l e t e _ d a t a _ s e t [ 4 0 4 6 : , : −1 ] = d a t a _ a b n o r m a l
5 np . random . s h u f f l e ( c o m p l e t e _ d a t a _ s e t )
6

7 X0 , X_ te s t , y0 , y _ t e s t = t r a i n _ t e s t _ s p l i t ( c o m p l e t e _ d a t a _ s e t [ : , : −2 ] ,
c o m p l e t e _ d a t a _ s e t [ : , −1 ] , t e s t _ s i z e = 0 . 2 )

8 X _ t r a i n , X_val , y _ t r a i n , y _ v a l = t r a i n _ t e s t _ s p l i t ( X0 , y0 , t e s t _ s i z e = 0 . 1 )
9 p r i n t ( X _ t r a i n . shape , y _ t r a i n . shape , X_val . shape , y _ v a l . shape , X _ t e s t . shape , y _ t e s t .

shape )
10

11 # Change t o c a t e g o r i c a l
12 y _ t r a i n = k e r a s . u t i l s . t o _ c a t e g o r i c a l ( y _ t r a i n )
13 y _ v a l = k e r a s . u t i l s . t o _ c a t e g o r i c a l ( y _ v a l )
14 y _ t e s t = k e r a s . u t i l s . t o _ c a t e g o r i c a l ( y _ t e s t )

We will use the Keras library to build the neural network. Keras can be used either in a sequential
manner (sequential API), either as a sequence of functions (functional API). Since the last option is
in the long run more flexible, we shall program it using the functional API.

1 from k e r a s . l a y e r s i m p o r t I n p u t , Dense , Conv2D , MaxPooling2D , Dropout , F l a t t e n ,
Conv1D , MaxPooling1D

2 from k e r a s . models i m p o r t Model
3

4 # Th i s r e t u r n s a t e n s o r
5 i n p u t s = I n p u t ( shape = ( 1 8 7 , 1 ) )
6

7 d e f my_layer ( x , p o o l i n g = F a l s e ) :
8 # a l a y e r i n s t a n c e i s c a l l a b l e on a t e n s o r , and r e t u r n s a t e n s o r
9 conv = Conv1D ( 1 6 , 5 , a c t i v a t i o n = ’ r e l u ’ , padd ing = ’ same ’ , i n p u t _ s h a p e = ( 1 8 7 , 1 ) ) ( x )

10 i f p o o l i n g i s True :
11 po o l ed = MaxPooling1D ( 3 ) ( conv )
12 r e t u r n p oo l ed
13 e l s e :
14 r e t u r n conv
15

16 x = my_layer ( i n p u t s )
17 y = my_layer ( x )
18 y2 = my_layer ( y )
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19 z = my_layer ( y2 , p o o l i n g =True )
20

21 v e c t o r = F l a t t e n ( ) ( z )
22 f i n a l _ v e c t o r = Dense ( 6 4 , a c t i v a t i o n = ’ r e l u ’ ) ( v e c t o r )
23 p r e d i c t i o n s = Dense ( 2 , a c t i v a t i o n = ’ so f tmax ’ ) ( f i n a l _ v e c t o r )
24

25 # Th i s c r e a t e s a model t h a t i n c l u d e s
26 # t h e I n p u t l a y e r and t h r e e Dense l a y e r s
27 model = Model ( i n p u t s = i n p u t s , o u t p u t s = p r e d i c t i o n s )
28 model . summary ( )

The method summary displays the architecture of the neural network, and is a good way to check
whether the dimensions at each step are well respected.

_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 187, 1) 0
_________________________________________________________________
conv1d_1 (Conv1D) (None, 187, 16) 96
_________________________________________________________________
conv1d_2 (Conv1D) (None, 187, 16) 1296
_________________________________________________________________
conv1d_3 (Conv1D) (None, 187, 16) 1296
_________________________________________________________________
conv1d_4 (Conv1D) (None, 187, 16) 1296
_________________________________________________________________
max_pooling1d_1 (MaxPooling1 (None, 62, 16) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 992) 0
_________________________________________________________________
dense_1 (Dense) (None, 64) 63552
_________________________________________________________________
dense_2 (Dense) (None, 2) 130
=================================================================
Total params: 67,666
Trainable params: 67,666
Non-trainable params: 0
_________________________________________________________________

The mappings depends on 67666 inner parameters, which are optimized to fit the training set. The
hyperparameters (parameters which do not define the functions, such as the learning rate) are set
using the validation dataset).

1 model . compi l e ( o p t i m i z e r = ’ adam ’ ,
2 l o s s = ’ c a t e g o r i c a l _ c r o s s e n t r o p y ’ ,
3 m e t r i c s =[ ’ a c c u r a c y ’ ] )
4

5

6 X _ t r a i n = np . expand_dims ( X _ t r a i n , a x i s =2)
7 X_val = np . expand_dims ( X_val , a x i s =2)
8 X _ t e s t = np . expand_dims ( X_ te s t , a x i s =2)
9

10 h i s t o r y =model . f i t ( X _ t r a i n , y _ t r a i n , b a t c h _ s i z e =64 , epochs =10 , v a l i d a t i o n _ d a t a =(
X_val , y _ v a l ) )
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After the training, Keras returns the accuracy and loss obtained both on the training set and the
validation set.

Epoch 10/10
10476/10476 [==============================] - 3s 328us/step -
loss: 1.2317e-04 - acc: 1.0000 -

val_loss: 0.0533 - val_acc: 0.9914

On the test set, the accuracy goes up to 98%, thus the model is well suited to the data.

1 _ , a c c u r a c y = model . e v a l u a t e ( X_ te s t , y _ t e s t )
2 p r i n t ( a c c u r a c y )
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