

National University Zaporizhzhia Polytechnic DESCRIPTION / Syllabus of discipline / module

Short name of the university / department	NU «Zaporizhzhya Polytechnic»
date (month / year)	10/2019
Module name / Course name	Biomedical materials and constructions
Code:	PPN 05

Teacher(s)	Department		
Shalomieiev Vadym	Radioengineering and Telecomunication		

Study cycle	Level of the module	Type of the module
MSc	1	mandatory

Duration	Language(s)			
15 weeks	Ukrainian			
on with other disciplin	nes			
Related (if re	Related (if required):			
and - term and gra	duation papers			
	15 weeks			

Credits of the module	Total student workload	Contact hours	Individual work hours						
5	150	60	90						
Aim of the module	e (course unit): compe	tences foreseen by the	study programme						
 knowledge of the characteristics of biocompatible and bioresorbable materials; ability to use biomedical materials correctly in accordance with the requirements for them; knowledge of the types and properties of polymers, ceramic and carbon biomaterials; ability to correctly use non-metallic biomaterials for the manufacture of implants depending on their purpose; knowledge of physical and mechanical properties of metallic biomaterials, their atomic-electronic structure, the relationship between structure and properties; ability to control the structure of metal alloys, to obtain the specified properties of biomaterials and apply them in practice. 									
Learning outcomes	s of module (course	Teaching/learning	Assessment						
un	lit)	methods	methods						
- to know and un	nderstand the different	- theoretical and	- assessment during						
approaches and metho	ods of system analysis	practical knowledge	laboratory works;						
in the choice of biome	dical materials;	obtained during							
		lectures and							
laboratory work;									
- to be able to implement basic methods - theoretical									
of scientific knowle	dge in the field of	knowledge gained	- assessment during						
biotechnology;		during lectures;	the exam;						

Co-funded by the Erasmus+ Programme of the European Union

of the European Onion		for human welfare
- to know and understand different	1 0	
approaches and methods of solving	gained during	- assessment by the
professional problems;	laboratory work;	report on laboratory
		works;
- be able to use different technologies	- knowledge gained	
to solve professional problems;	during laboratory	- assessment by the
	work;	report on laboratory
		work;
- know, understand and assess the level		
of compliance of applied biomaterials to the	practical knowledge	-
proposed requirements;	gained during	the exam;
	independent work	
	and consultations;	
- to be able to use modern technologies	- theoretical and	
as a tool for research, development and	practical knowledge	- assessment during
evaluation in the manufacture of implants.	gained during	laboratory work and
	independent work,	exam.
	lectures and	
	laboratory work.	

Themes		Contact work hours						Time and tasks for individual work	
		Consultation	Seminars	Practical work	Laboratory work	Total contact work	Individual work	Tasks	
Content module 1. Materials of	biom	edica	al ap	plica	tion	, the	ir char	acteristics, features of	
application. Patterns of	f the s	truct	ure f	form	atior	n of 1	netall	ic materials.	
Theme 1. Materials of biological application. The main characteristics of biomaterials. Purpose and requirements for biomaterials.	2	-	_	_	2	10	6	Knowledge of materials of biological application. The study of the main characteristics and requirements for biomaterials.	
Theme 2. Natural and synthetic polymers. Their use in medicine.	2	-	-	-	2	10	6	The study of different types of polymers, their use in medicine.	

of the European U	nion							Engineering education for human welfare
Theme 3. Ceramic and carbonaceous biomaterials. Basic types and assignments.	2	-	-	_	4	16	10	The study of ceramic and carbonaceous biomaterials, their main types and purpose.
Theme 4. Classification of metallic biomaterials. Atomic-crystalline composition of metals.	8	_	_	_	4	34	18	The study of the classification of metallic biomaterials. Knowledge of the atomic-crystalline composition of metals, types of crystal lattices.
Theme 5. Theory of alloys. Phases in metal alloys, double state diagrams.		-	-	-	4	18	10	Fundamentals of the theory of alloys. Knowledge of the phases in metal alloys and basic state diagrams.
Together on the content module 1	18	-	-	-	16	84	50	
Content module 2. Iron and technology of heat treatment.								
Theme 6. Deformation of alloys and the theory of heat treatment.	4	_	-	_	6	28	18	The study of the types of deformation of alloys and its influence on the properties of the metal. Fundamentals of the theory of heat treatment.
Theme 7. Iron based alloys, controlling their structure and properties.	4	-	-	-	4	18	10	Knowledge of the Iron based alloys. The study of ways to control their structure and properties.
Theme 8. Cobalt and titanium alloys. Their characteristics and application.	2	-	-	-	2	10	6	The study of the characteristics and applications of cobalt and titanium alloys.
Theme 9. Bioresorptive alloys. Special features of their production and application.	2	-	-	-	2	10	6	Knowledge of the concept of "bio- solubility". The study of the characteristics of the production and application of bioresorptive materials.

Together on the co	ontent module 12	-	-	-	14	40	40	
Total 150	hours 30	-	-	-	30	60	90	

Assessment strategy	Weight in %	Deadlines	Assessment criteria
current assessment	10		theoretical report on each topic
	10		defense of laboratory work №1
	10		defense of laboratory work №2
	10	during the	defense of laboratory work №3
	10	semester	defense of laboratory work №4
laboratory work defense	10		defense of laboratory work №5
	10		defense of laboratory work №6
	10		defense of laboratory work №7
	10		defense of laboratory work №8
	10		defense of laboratory work №9
passing a written exam	60-100		credited
	35-59	after the	not credited with the possibility of re-
	33-39	module	taking
	1-34		not credited with mandatory re-study of the discipline

Author	Year of issue	Title	Information about the publication	Place of printing. Printing house or internet link
	1	Compulsory literat	ture	
Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen, Jack E. Lemons	2013	Biomaterials Science	Educational manual	An Introduction to Materials in Medicine. Elsevier Inc, 1573p., ISBN: 978-0-12- 374626-9.
Joon Park, R.S. Lakes.	2007	Biomaterials: AnIntroduction.	Educational manual	Springer, 2007, 574p., ISBN: 978- 0387378794.
Gary E. Wnek, Gary L. Bowlin	2008	Encyclopedia of Biomaterials and Biomedical Engineering.	Encyclopedia	Informa Health care USA Inc.Vol. 1-4, 3552p., ISBN: 978-1- 4200-7953-1.

Co-funded by the Erasmus+ Programme of the European Union

UT THE L		for human welfare		
Lakhtin Y.M., Leont'yeva V.P.	1980	Materials Science	Textbook	Mechanical engineering, Moscow, 493 p.
Aftandilyants Y.H., Zazymko O.V., Lopat'ko K.H	2013	Materials Science	Textbook	Lira-K, Oldy-plyus, Kyiv, 612 p.
Merezhko N.V., Zimina N.K., Sirenko S.O., Sim"yachko O.I	2010	Materials science and technology of materials	Textbook	Nat. trade-ekon. un- ty, Kyiv, 352 p.
V.A. Shalomeev, A.A. Glotka, E.V. Lisitsa, G.V. Tabunshchik	2020	Materials science of medical devices.	Textbook	Zhytomyr: publishing OO Evenyuk, 212 p.
		Additional literat	ure	
Lisa A. Pruitt, Ayyana M. Chakravartula.	2011	Mechanics of Biomaterials.	Textbook	Cambridge University Press, 2011, 645p., ISBN: 978-0- 521-76221-2.
M.B. Altman, A.F. Belov, V.I. Dobatkin	1978	Magnesium alloys: the handbook	Textbook	Metallurgy, Moscow, 232 p.
G.V. Raynor	1964	The Physical Metallurgy of Magnesium and Its Alloys	Textbook	Metallurgy, Moscow, 487 p.

Prepared in framework of ERASMUS+ project «Innovation Multidisciplinary Training Program for BA and MSc Trainings for Implants for Biological Engineering» 586114-EPP-1-2017-1-ES-EPPKA2-CBHE-JP

Disclaimer: The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.