



## DESCRIPTION OF THE COURSE SYLLABI

## NU ZAPORIZHZHIA POLYTECHNIC, UATITLE OF THE COURSECodeCAD OF BIOMEDICAL DEVICES AND STRUCTURESППВ02

| Teacher(s)                                                   | Department     |
|--------------------------------------------------------------|----------------|
| Coordinating: Anzhelika Parkhomenko<br>Others: Olga Gladkova | Software Tools |
|                                                              |                |

| Study cycle | Level of the curricula | Type of the curricula |  |  |
|-------------|------------------------|-----------------------|--|--|
| MA          | 2                      | elective              |  |  |

| Form of delivery | Duration | Language(s) |
|------------------|----------|-------------|
| Lectures/lab     | 15 weeks | Ukr/Eng     |

| Prerequisites                                              |                               |  |  |  |
|------------------------------------------------------------|-------------------------------|--|--|--|
| Prerequisites: Basics of CAD                               | Co-requisites (if necessary): |  |  |  |
| - Biomedical materials and structures                      |                               |  |  |  |
| - Embedded biomedical systems and wireless sensor networks |                               |  |  |  |

| ECTS | Total student workload<br>hours | Contact hours | Individual work hours |
|------|---------------------------------|---------------|-----------------------|
| 5    | 150                             | 60            | 90                    |

| Aim of the course: competences foreseen by the study programme                                                     |                                |                           |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------|--|--|--|--|--|
| Research, development and practical application of modern computer-aided design technologies of biomedical devices |                                |                           |  |  |  |  |  |
| and structures                                                                                                     |                                |                           |  |  |  |  |  |
| Learning outcomes of the course                                                                                    | Teaching/learning methods      | Assessment methods        |  |  |  |  |  |
| Students will gain general competencies defined in the                                                             | Lectures, preparation for      | Separate assessment does  |  |  |  |  |  |
| Educational Professional Program                                                                                   | laboratory classes, laboratory | not apply                 |  |  |  |  |  |
|                                                                                                                    | works execution, students      |                           |  |  |  |  |  |
|                                                                                                                    | self-study under the guidance  |                           |  |  |  |  |  |
|                                                                                                                    | of a teacher.                  |                           |  |  |  |  |  |
| Students will gain special competencies defined in the                                                             | Lectures and consultations.    | Assessment during exam.   |  |  |  |  |  |
| Professional Education Program                                                                                     | Students self-study under the  | Reports on laboratory and |  |  |  |  |  |
|                                                                                                                    | guidance of a teacher,         | self-study works.         |  |  |  |  |  |
|                                                                                                                    | preparation and execution of   |                           |  |  |  |  |  |
|                                                                                                                    | laboratory works.              |                           |  |  |  |  |  |
| Students will be able to develop new and effectively use                                                           | Students self-study under the  | Reports on laboratory and |  |  |  |  |  |
| the existing technologies of prototyping and designing of                                                          | guidance of a teacher,         | self-study works.         |  |  |  |  |  |
| biomedical devices and structures                                                                                  | preparation and execution of   |                           |  |  |  |  |  |
|                                                                                                                    | laboratory works.              |                           |  |  |  |  |  |



## Co-funded by the Erasmus+ Programme of the European Union



|                                                                                                                                             | Contact work hours |              |          |                | Time and tasks for<br>individual work |            |                    |                 |                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|----------|----------------|---------------------------------------|------------|--------------------|-----------------|-----------------------------------------------------------------------------------------------|
| Themes                                                                                                                                      | Lectures           | Consultation | Seminars | Practical work | Laboratory work                       | Placements | Total contact work | Individual work | Tasks                                                                                         |
| <b>Module 1.</b> Methodology of biomedical devices and structures development                                                               | 12                 |              |          |                |                                       |            | 12                 | 18              |                                                                                               |
| 1.1 Tasks and problems of software tools<br>application for the implementation of life cycle<br>stages of biomedical devices and structures | 2                  |              |          |                |                                       |            | 2                  | 4               | Analysis of literature sources                                                                |
| 1.2 Current state and prospects of CAD/CAM/CAE system development. New directions in design.                                                | 4                  |              |          |                |                                       |            | 4                  | 6               | Analysis of literature sources                                                                |
| 1.3 Systems of geometric modeling. Solid modeling. Assembly modeling.                                                                       | 6                  |              |          |                |                                       |            | 6                  | 8               | Analysis of literature sources                                                                |
| <b>Module 2.</b> Computer-aided design of biomedical devices on the basis of Mechanical CAD (MCAD)                                          | 4                  |              |          |                | 20                                    |            | 24                 | 21              |                                                                                               |
| 2.1 Structure and functionality of the Creo system                                                                                          | 2                  |              |          |                | 2                                     |            | 4                  | 4               | Preparation for<br>laboratory work<br>№1. Self-study<br>work №1 (Part 1)<br>execution.        |
| 2.2 Development and research of 3D virtual prototypes of biomedical structures                                                              | 2                  |              |          |                | 18                                    |            | 20                 | 17              | Preparation for<br>laboratory works<br>№ 2-5. Self-study<br>works №2-6 (Part<br>1) execution. |
| <b>Module 3.</b> Computer-aided design of biomedical devices on the basis of Electronic CAD (ECAD)                                          | 4                  |              |          |                |                                       |            | 4                  | 26              |                                                                                               |
| 3.1 Structure and functionality of ALTIUM DESIGNER                                                                                          | 2                  |              |          |                |                                       |            | 2                  | 2               | Self-study work<br>№1 (Part 2)<br>execution.                                                  |
| 3.2 Development and investigation of electronic circuits and printed circuit boards design techniques for biomedical apparatus              | 2                  |              |          |                |                                       |            | 2                  | 24              | Self-study works<br>№2-6 (Part 1)<br>execution.                                               |
| <b>Module 4.</b> Advanced techniques of biomedical devices and structures rapid prototyping                                                 | 10                 |              |          |                | 10                                    |            | 10                 | 25              |                                                                                               |
| 4.1 Classification of prototyping technologies.<br>Virtual and physical prototyping                                                         | 4                  |              |          |                |                                       |            | 4                  | 7               | Analysis of literature sources                                                                |
| 4.2 Technologies of 3D printing and 3D scanning. Software and hardware.                                                                     | 4                  |              |          |                | 10                                    |            | 4                  | 10              | Preparation for<br>laboratory works<br>№ 6-7.                                                 |
| 4.3 The features of prototyping of robotic prostheses of human upper limb                                                                   | 2                  |              |          |                |                                       |            | 2                  | 8               | Analysis of literature sources                                                                |
| Is viso                                                                                                                                     | 30                 |              |          |                | 30                                    |            | 60                 | 90              |                                                                                               |



## Co-funded by the Erasmus+ Programme of the European Union



| Assessment strategy                  | Weight<br>in<br>% | Deadlines | Assessment criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------|-------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Final exam                           | 40                | 20        | Grade A (excellent) - clarity of expression – excellent,<br>confident delivery, practical tasks – full done.<br>Grade B (good) – clarity of expression – good, thoughts and<br>ideas clearly expressed, practical tasks - well done.<br>Grade C (good) - clarity of expression – well-placed, delivery<br>is fluctuating, practical tasks - well done.<br>Grade D (passed) - clarity of expression – poor, delivery is<br>fluctuating, practical tasks done with mistakes.<br>Grade E (fail) - failure in theoretical or practical tasks. |
| Lab and self-study works assessments | 60                | 40        | All labs and self-study reports should be passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Author                                                                                                              | Year<br>of<br>issue | Title                                                                                                                                                                             | No of<br>periodi<br>cal or<br>volume | Place of printing. Printing<br>house or internet link                          |
|---------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------|
|                                                                                                                     | T                   | Compulsory literature                                                                                                                                                             |                                      |                                                                                |
| A.V. Parkhomenko,<br>O. M. Gladkova,<br>A. V. Parkhomenko                                                           | 2021                | PROTOTYPING OF<br>BIOMEDICAL DEVICES AND<br>STRUCTURES                                                                                                                            |                                      | Zhytomyr,<br>PE "Euro-Volyn"<br>http://eir.zp.edu.ua/handle/12345<br>6789/6801 |
| A. Parkhomenko,<br>O. Gladkova,<br>A. Tulenkov                                                                      | 2021                | Modern Technologies for<br>Biomedical Systems Prototyping<br>In: Teaching and subjects on bio-<br>medical engineering. Approachwes<br>and experiences from the<br>BIOART- project |                                      | Acco cv, Leuven, Belgium                                                       |
| <ul><li>A. V. Parkhomenko,</li><li>A. V. Pritula,</li><li>V. M. Krishchuk</li></ul>                                 | 2020                | Computer aided design of<br>electronic devices in CREO and<br>ALTIUM DESIGNER                                                                                                     |                                      | Zhytomyr, Evenok<br>http://eir.zp.edu.ua/handle/12345<br>6789/6801             |
| <ul><li>A. V. Parkhomenko,</li><li>O. M. Gladkova,</li><li>Ya. I. Zalyubovskiy,</li><li>A. V. Parkhomenko</li></ul> | 2017                | Engineering of Embedded Systems                                                                                                                                                   |                                      | Zaporizhzhia, Dyke pole<br>http://eir.zntu.edu.ua/handle/1234<br>56789/1969    |
|                                                                                                                     |                     | Additional literature                                                                                                                                                             |                                      |                                                                                |
| I. Gibson,<br>D. W. Rosen,<br>B. Stucker                                                                            | 2017                | Additive Manufacturing<br>Technologies                                                                                                                                            |                                      | Springer                                                                       |
| L. J. Kumar,<br>P. M. Pandey,<br>D. I. Wimpenny                                                                     | 2019                | 3D Printing and Additive<br>Manufacturing Technologies                                                                                                                            |                                      | Springer                                                                       |
| S. N. Bernier,<br>B. Luyt,<br>T. Reinhard                                                                           | 2015                | Design for 3D Printing: Scanning,<br>Creating, Editing, Remixing, and<br>Making in Three Dimensions                                                                               |                                      | Maker Media, Inc .,                                                            |