

Zaporizhzhia Polytechnic National University DESCRIPTION / Syllabus of discipline / module

Short name of the university / department	NU «Zaporizhzhia Polytechnic»		
date (month / year)	08/2020		
Module name / Course name	Machine learning and artificial intelligence		
Code:	PPN 02		

Teacher(s)	Department
Morshchavka Sergii	Radioengineering and Telecomunication
Subbotin Sergey	

Study cycle	Level of the module	Type of the module
MSc	1	mandatory

Form of delivery	Duration	Language(s)				
Lectures/Hands-on Lab session	15 weeks	Ukrainian				
Connection with other disciplines						
Previous:	Related (if red	quired):				

Credits of the module	Total student workload	Contact hours	Individual work hours			
5	150	60	90			
Aim of the module (course unit): competences foreseen by the study programme						

Providing a clear understanding of the models, methods and software tools for intelligent problem solving and for intelligent system building for biomedical field.

Learning outcomes of module (course unit)	Teaching/learning	Assessment methods
	methods	
- be fluent in the state language and	- using during	- without separate
communicate foreign language;	lectures listening and	assessment;
- be able to reasonably choose and	preparing to practical	
effectively apply mathematical methods	work and labs.	
computer simulation technology as well also		
methods optimization telecommunications		
and radio engineering telemedicine and		
biomedical systems and devices;		
- demonstrate an understanding of the	- theoretical	
subject area and understanding of	knowledge received	- evaluate by the
professional activity, apply knowledge in	during lectures and	report on laboratory
practice situations, evaluate and provide	consultations	works;

quality performed works;

- be able to use and improve of the modern software, hardware of telecommunications and radio engineering devices and biomedical systems;
- use informational and communication technologies for to search, processing and analysis of information from various sources; be capable of the abstract thinking, analysis and synthesis, work both autonomously and in the team;
- be able to think abstractly, analyze and synthesize, work both independently and in a team.

- independent and under supervising preparation and implementation practical work.

- assessment during laboratory work and exam.

Themes		Contact work hours						Time and tasks for individual work	
		Consultation	Seminars	Practical work	Laboratory work	Total contact work	Individual work	Tasks	
Theme 1. Main definitions of artificial intelligence.		-	-	-	4	8	12	Study of problems and methods of artificial intelligence usage	
Theme 2. Pattern recognition	4	-	-	-	4	8	12	Study of basic techniques of pattern recognition	
Theme 3. Crisp cluster analysis		-	-	-	4	8	12	Study of clustering methods usage	
Theme 4. Neuro-fuzzy systmes		-	_	_	4	8	12	Introduction to neuro-fuzzy systmes	
Theme 5. Knowledge based systems.	3	-	-	-		3	14	Learning of a tructure and main types of knowledge based systems	

								Statistical data
Theme 6. Infrerence	3	_		-	1	7	10	processing using
Theme of inflerence	3	_			_		10	neurofuzzy
								technologies
								Consideration of the
Theme 7. Applied tasks.	4	-			10	14	4	real application
			_	-	10	14	4	examples of studied
								methods
Thoma 9 Unaveledge sytuation								Study of methods for
Theme 8. Knowledge extraction form the data	4	-	-	-	-	4	14	knowledge extraction
								from the data
Total	30	-	-	-	30	60	90	

Assessment strategy	Weight in %	Deadlines	Assessment criteria
current assessment	50		theoretical report on each topic
laboratory work defense	12,5 12,5 12,5 12,5	during the semester	defense of laboratory work №1 defense of laboratory work №2 defense of laboratory work №3 defense of laboratory work №4
passing the written exam	90-100 75-89 60-74 35-59	after the module duriing the examination session	excellent good enough unsatisfactorily with mandatory re-study of the discipline unsatisfactorily with obligatory re-study of the discipline

Author	Year of issue	Title Compulsory literat	Information about the publication ure	Place of printing. Printing house or internet link
Subbotin S,	2008	Knowledge representation and processing in artificial intelligence and decision support systems	textbook	Zaporizhzhia, ZNTU, 2008. – 341 p.
Oliynyk A.	2011	Intellectual data analysis	textbook	Zaporizhzhia, ZNTU, 2011 271 p

Additional literature									
S. Subbotin et al,	2005	Intelligent information technologies for designing automated diagnostic systems and monograph	book	Kharkiv: SMIT Company, 2012 318 p.					
Luger G.	2005	Artificial intelligence: strategies and methods for solving complex problems	book	Moscow , Williams, 2005 864 p.					
Russell S.	2006	Artificial intelligence: modern approach	book	Moscow , Williams, 2006 1408 p,					

Prepared in framework of ERASMUS+ project «Innovation Multidisciplinary Training Program for BA and MSc Trainings for Implants for Biological Engineering» 586114-EPP-1-2017-1-ES-EPPKA2-CBHE-JP

Disclaimer: The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.