

Zaporizhzhya Polytechnic National University
Faculty of Radio Electronics and Telecommunications
Department of Radio Engineering and Telecommunications
specialty 172 "Telecommunications and radio engineering" educational and
professional program "Telemedicine and biomedical systems"

DESCRIPTION / Syllabus of discipline / module

Short name of the university / department	NU «Zaporizhzhya Polytechnic»		
date (month / year)	08/2020		
Module name / Course name	Modern trends in nanotechnologies		
Code:	PPV 03		

Teacher(s)	Department
Pogosov Valentin Valterovich	Micro- and Nanoelectronic
Korotun Andriy Vitaliyovich	

Study cycle	Level of the module	Type of the module
MSc	2	selective

Form of delivery	Duration	Language(s)
Lectures/Hands-on Lab	15 weeks	Ukrainian
session		
Connecti	on with other disciplin	es
Previous:	Related (if red	quired):
- Embedded biomedical systems		
andwired sensor networks;		
- Biomedical materials and structur	es.	

Credits of the module	Total student workload	Contact hours	Individual work hours
3	3 90		60
			_

Aim of the module (course unit): competences foreseen by the study programme

- to form students' ideas about the technological processes developed nanoscale objects, formation and manufacturing of structures, devices and for application in biology and medicine, the physical principles of their work, as well as their capabilities and restrictions on the application;
- mastering the physical foundations and methods of nanobiotechnology at a level sufficient for further self-improvement in one of the areas of this scientific discipline.

T	/D 1 /L	A
Learning outcomes of module (course	Teaching/learning	Assessment
unit)	methods	methods
- be fluent in the state language and	- using during	- without separate
communicate foreign language;	lectures listening and	assessment;
- the ability to generate new ideas	preparing to	
(creative activity), to obtain independently	practical work and	
with the help of information technology and	labs.	

- the ability to choose the best methods of the research, modify and adapt existing, develop new research methods in accordance with existing technical means and form a technique of processing research results.

of the European Union		Engineering education for human welfare
to use new knowledge and skills in practice, including in new industries and knowledge not directly related to the area of expertise;		
- demonstrate an understanding of the subject area and understanding of professional activity, apply knowledge in practice situations, evaluate and provide quality performed works; - be able to use and improve of the modern software, hardware of telecommunications and radio engineering devices and biomedical systems;	- theoretical knowledge received during lectures and consultations	- evaluate by the report on laboratory works;
- the ability to assess the level of existing technologies in the field of professional activity efficiency of technical solutions and the emergence of objects of intellectual property, find ways and opportunities for the implementation of scientific ideas in profitable business projects and startups; - ability to use information valuable technologies, methods of intellectualization and visualization, artificial intelligence, cloud calculations for research and analysis processes in telemedicine and biomedical systems;	- independent and under supervising preparation and implementation practical work.	- assessment during laboratory work and test.
- the ability to use standard and develop your own software products, focused on solving project problems-and calculation of components tele- and biomedical systems for optimization of the structure and the research facilities, preparation of the necessary technological documentation;	-	- assessment during laboratory work and exam.

	C	Contact work hours						Time and tasks for individual work	
Themes		Consultation	Seminars	Practical work	Laboratory work	Total contact work	Individual work	Tasks	
Intro	0,5	-	-	-	-	0,5	2	Evaluation of social and economic- humanitarian aspects of nanotechnology development	
Topic 1. Nanomaterials and nanotechnologylogic.	1,5	-	-	-	5	6,5	8	Solving individual home task by assessment	
Topic 2. Elements of nanobiology.	2	-	-	ı	2	4	9	Analysis of modern state of the nanobiotech- technologies development and future prospects.	
Topic 3. Self-assembly and self-organization.	2	-	-	-	2	4	9	Solving individual home task by assessment	
Topic 4. Nanobiophysical methods of the bionanostructures processing.	2	-	-	-	2	4	6	Analysis of possible and disadvantages modern research methods bionano- structures	
Topic 5. Biomolecular sensory and self-replication.	2	1	-	ı	2	4	8	Structural scheme that has a biomolecular sensors	
Topic 6. Nanomedicine.		-	-	-	2	4	6	Trend analysis current development of modern nano- medicine	
Topic 7. Nanopharmacy.	2	-	-	-	-	2	8	Trend analysis this current development of modern nanopharmacy	

								Comparison of
Topic 8. Biomedical								achievements on the
		-			-		4	current stage of
	1					1		nanoscience on
applications of nanoplasmonics.			_	_		1	4	creating an
								application in
								modern systems
								nanobiotechnology
Total 90 hours	15	-	-	-	15	30	60	

Assessment strategy	Weight in %	Deadlines	Assessment criteria		
current assessment	10		theoretical report on each topic		
	15		defense of laboratory work №1		
	15	during the	defense of laboratory work №2		
laboratory work defense	15	semester	defense of laboratory work №3		
	15		defense of laboratory work №4		
	15		defense of laboratory work №5		
	15		defense of laboratory work №6		
passing the test	60-100		credited		
	35-59	after the	not credited with the possibility of re-		
	33-39	module	taking		
	1-34		not credited with mandatory re-study of		
	1-34		the discipline		

Author	Year of issue	Title	Information about the publication	Place of printing. Printing house or internet link
		Compulsory literat	ure	
Pogosov V.V., Kunitsky Yu. A., Babich A.V., Korotun A.V., Shlack A. P.	2011	Nanophysics and nanotechnology	educational manual	Zaporozhye: ZNTU, 2011 384 p.
Korotun A.V., Karandas' Ya.V., Pogosov V.V.	2019	Essay on modern directions in nano technologies	educational manual	Uzhhorod: FOP Sabov AM, 2019
Pogosov V.V., Kunitsky Yu.A., Babich A.V., Korotun A.V.	2009	Elements of physics surfaces, nano- structures and technological	educational manual	Zaporozhye: ZNTU, 2010 365 p.

Korotun A.V., Titov I.M., Koval A.O., Stashchuk V.S, Kunitsky Yu.A., Kryuchin A.A.; by ed. Stashchuk V.S. and Kunitsky Yu.A.	2018	Nanophotonics. Physical basics and applications	monograph	Vinnytsia: Works. – 316pp.
		Additional literat	ure	
J. M. Martinez- Duart, R. J. Martin- Palma, F. Agullo- Rueda	2007	Nanotechnology for micro- and optoelectronics	book	M .: Technosphere
Nazarov O.M., Nishchenko M.M.		Nanostructures and nanotechnology	book	K .: NAU
Pogosov V.V., Kornich G.V., Vasyutin E.V., Pugin K.V., Kiprich V.I.	2016	Fundamentals of Nanophysics and nanotechnology	[Electronic source]	Zaporozhye: ZNTU, Access mode http://www.zntu.edu.ua/base/persons/51.ht m

Prepared in framework of ERASMUS+ project «Innovation Multidisciplinary Training Program for BA and MSc Trainings for Implants for Biological Engineering» 586114-EPP-1-2017-1-ES-EPPKA2-CBHE-JP

Disclaimer: The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.