Password for secured document : PAR (only unlock if really necessary)

DESCRIPTION/Syllabi of Curricula/Module

Short Name of the University/Country code	
Date (Month / Year)	
TITLE OF THE MODULE	Code
Data Science for Bio-Engineering	

	Teacher(s)	Department
Coordinating:	Prof. Gur Yaari	Engineering
Others:		

Study cycle	Level of the module	Type of the module
(BA/MA)	(Semester number)	(compulsary/elective)
BSc	6	compulsory

Form of delivery	Duration	Language(s)				
(theory/lab/exercises)	(weeks/months)					
theory/ exercises	12 weeks	Hebrew				

Prerequisites					
Prerequisites:	Co-requisites (if necessary):				
Probability and Statistics 1.					
Experience with programming is helpful, but not assumed					

ECTS (Credits of the module)	Total student worl hours	kload	Contact hours	Individual work hours	
6	146		48		98
Aim of the r	nodule (course unit):	: compe	etences foreseen by the	stud	y programme
In this course which is designed for advanced management. It will focus on algorithms, stat that go well beyond the capabilities of conver			graduates, we will stud nethods and analysis o nformation technologie	y th of da s.	e state of the art in big data ata at a scale and efficiency
Learning outcomes of module (course unit)		achi (th	ng/learning methods eory. lab. exercises)	(Assessment methods (written exam, oral exam,
		(th	cory, ind, exercises)	reports)	
The students at the end o	f the course should	th	eory/exercises	нw	/ midterm quiz / Final
emerge with the following competencies:	s core			pro sub	ject: presentation and mitted work
 Graduates should have understanding and hands- data analysis. 	a broad on experience in				
2. Should know how to us inferences about data and to do that using R and BAS related scripting language manipulation, visualization	e data to draw I should be skilled SH or any other for data n, and analysis.				

	Contact work hours	Time and tasks for individual work
Themes		

	Le ct ur es	C on su lta ti on s	Se m in ar s	Pra ctia cl wor k	L a b o r a t o r y w o r k	Pl ac e m en ts	Tot al con tac t wo rk	Indi vidu al wor k	Tasks
Foundations of R: Why use R, basic variables, datasets, functions, apply, R-markdown, visualization, basic plots, dplyr.	9			3			12	12	3
Inference: Random variables, NULL Hypothesis, t tests, Chi square, proportion tests in R, ANOVA, permutation test, bootstrapping	9			3			12	12	3
Regression analysis: Inference using regression models, simple linear regression, logistic regression, multiple linear regression, categorical predictors and Interactions	9			3			12	12	3
Machine Learning – KNN, cross validation, variable selection, hierarchical clustering , k- means, PCA, unsupervised CARET	6			2			8	8	2
Bash – Linux and command line tool	3			1			4	4	2
Final project								50	1
Total	36			12			48	98	14

Assessment strategy	Weigh t in %	Deadline s	Assessment criteria
НW	15		
midterm quiz	20		
Kahoot!	15		Each lesson starts/ends with an interactive quiz - the student with the highest score gets a bonus
Final Project	50		25- presentation 25- submitted work

Author

Compulsory literature

This course uses Open Source components.

You can find the source material of their open source projects along with license information below.

We acknowledge and are grateful to these developers for their contributions to open source.

Data Analysis for Genomics http://genomicsclass.github.io/book/

Copyright (c) 2013 Rafael Irizarry and Michael Love

License (MIT) https://github.com/genomicsclass/labs/blob/master/LICENSE

Statistical Modeling: A Fresh Approach http://project-mosaic-books.com

Second Edition, Copyright (c) 2012, v2.0 Daniel Kaplan

Data Science Specialization <u>https://github.com/DataScienceSpecialization/courses</u>

© 2017 Coursera Inc. All rights reserved.

Contributors: Brian Caffo, Jeff Leek, Roger Peng, Nick Carchedi, Sean Kross License (CC-NC-SA) <u>https://tldrlegal.com/license/creative-commons-attribution-noncommercial-sharealike-(cc-nc-sa)</u>

Programming in R for Analytics <u>http://www.contrib.andrew.cmu.edu/~achoulde/94842/</u>

Contributors: Alexandra Chouldechova

License (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/