

DESCRIPTION/Syllabi of Curricula/Module

Short Name of the University/Country code	DSEA
Date (Month / Year)	Jan 2019
TITLE OF THE MODULE	Code
Regenerative engineering and design of optimal structures	

Teacher(s)	Department
Coordinating: Olexander Altukhov, PhD	Department of Computer and Information
Others:	Technology (CIT)

Study cycle	Level of the module	Type of the module
(BA/MA)	(Semester number)	(compulsary/elective)
Master	2 th semester (first year) for Master	elective

Form of delivery	Duration	Language(s)
(theory/lab/exercises)	(weeks/months)	
Lectures, lab	8 weeks	Ukrainian / English

Prerequisites							
Prerequisites:	Co-requisites (if necessary):						
Human anatomy and physiology, mechanics of solids, structure of polymers, protein, polysaccharides, metals and non metal elements, atomic bonding.							

ECTS (Credits of the module)	Total student worl hours	kload	Contact hours		Individual work hours
5,5	165		72		93
Aim of the m	odule (course unit):	compe	tences foreseen by the s	tudv	nrogramme
				-	
Students should be able t explanation of a set of				-	•
optimal structures, imp	•				
biomedical equipment an	e e	-			<u>^</u>
		Teach	ning/learning methods		Assessment methods
Learning outcomes of mo	dule (course unit)	(th	eory, lab, exercises)	(v	vritten exam, oral exam, reports)
 Knowledge: to teach the future specialist in computer science knowledge and use of fundamental concepts and practical solutions that underlie modern technologies of regenerative medicine; acquaintance with the basic principles of restoration of the lost human functions; consideration of areas of regenerative medicine; gaining skills in choosing technologies to restore the lost capabilities of the human body; formation of skills and abilities to use the tools of design and modeling of biomedical equipment and implants. 			with the lecture as well as on the able fundamental ct literature		owledge test
Skills: - perform modeling and research of technical, organizational and technical systems, products and medical systems; use methods of research of operations, solution of one- and multi-criteria optimization problems of nonlinear programming; - apply design information technologies to develop optimal structures and model the behavior of mechanical and biomechanical objects, automated design of products for various purposes, as well as the use of virtual reality technologies for modeling and learning tasks.			rres, lab, consultation	lect	tive attendance on tures, individual project l presentation

			Conta	act wor	k hour	s			me and tasks for ndividual work
Themes	Lectures	Consultations	Seminars	Practiacl work	Laboratory work	Placements	Total contact work	Individual work	Tasks
Regenerat	tive me	dicin	e and b	oiotechi	iology i	in orth	opaedi	es	
1. An overview of regenerative medicine. Scope of anatomy, physiology and basic terminology. Functional biomaterials for regenerative medicine. Introduces the recent trends of smart natural biomaterials for regenerative medicine. Biocompatibility: Methods for testing and evaluating biocompatibility: In Vitro Testing, In Vivo Testing.	4				2		6	10	Study exam/ complete exercise
2. Dental implant modalities: Dentures, Subperiosteal, Endosteal; Blade type, Root form, Packaging and preparation of dental implants. Cardiac implants, Opthalmic implants, Vitreous Implants.	2				2		4	10	Study exam/ complete exercise
3. Bones and Joints: Structure and function of skeleton, types of joints and their disorders. Orthopedic implants:	4				4		8	10	Study exam/ complete exercise

Temporary fixation devices,									
Fracture healing, Repair of the									
ligaments, ACL reconstruction									
using biological and synthetic									
materials, Joint replacements:									
Total Hip replacement, Total									
knee replacement, Bone									
regeneration with re-sorbable									
material.									
Mechanical	design	metl	hods fo	or bio-	mecha	nical e	engine	ering	
4. Virtual Prototyping. Virtual	4				4		8	10	Study exam/
prototyping is the backbone of									complete
the e-Design paradigm. Product									exercise
modeling and simulations using									
integrated CAD/CAE/CAM									
software.									
5. Finite element modeling.	6				4		10	13	Study exam/
Topology Decomposition	0				+		10	13	complete
Approach. Geometry									exercise
Decomposition Approaches.									
Grid-Based Approach.									
Improvement of Mesh Quality.									
Fundamentals of Dental									
Implant Biomechanics.									
Interface between Bone and									
Implant. Assumptions of									
Detailed Geometry of Bone and									
Implant. Material Properties.									
Boundary Conditions.									
6. Physical Prototyping. Rapid	3				4		7	13	Study exam/
prototyping (RP) systems,									complete
based on solid freeform									exercise
fabrication (SFF) technology									
(Jacobs 1994), fabricate									
physical prototypes of the									
structure for design									
verification. Computer									
numerical control (CNC)									
machining fabricates functional									
parts as well as the mold or die									
<u>^</u>									
for mass production of the									
product.	2				6		6	12	Q. 1 /
7. CNC Machining. The	3				6		9	13	Study exam/
machining operations of virtual									complete exercise
manufacturing: milling,									CACICISC
turning, and drilling, planing									
the machining process.									

Generating the machining tool path, visualize and simulate machining operations, and estimate machining time. Converting into CNC codes (M-codes and G-codes) to fabricate functional parts as well as a die or mold for production.						
8. 3D bioprinting techniques in regenerative medicine. Definition and principles of 3D printing. 3D bioprinting technologies: Ink-Jet-based bioprinting, Pressure-assisted bioprinting, Laser-assisted bioprinting, Solenoid valve- based printing, Acoustic-jet printing. Biopriting for skin. Organ printing. Cell, stem cell printing. 3D printing for orthopedic implants.	4		4	8	14	
Total of basic part	30		30	72	93	

Assessment strategy	Weight in %	Deadlines	Assessment criteria
written exam theory	40%	during the semester / exam	Good response to the questions
Practical exam on a computer	60%	during the semester / exam	the work is done completely without mistakes or minor errors

Author	Year of issue	Title	No of periodical or volume	Place of printing. Printing house or internet link
Compulsory literature				
Atala, Anthony; Murphy, Sean V	2017	Regenerative medicine technology: on-a-chip applications for disease modeling, drug discovery and personalized medicine		CRC Press ISBN: 978-1-4987-1191-3
Srinivas D. Narasipura, Michael R. King	2012	Engineering Biomaterials for		Springer-Verlag New York

		Regenerative Medicine:		ISBN: 978-1-4614-1079-9
		Novel Technologies for		
		Clinical Applications		
Kursad Turksen	2015	Bioprinting in		Springer International
		Regenerative Medicine		Publishing
				ISBN: 978-3-319-21385-9
Lijie Grace Zhang,John P	2015	3D Bioprinting and		Academic Press
Fisher,Kam Leong		Nanotechnology in		ISBN: 9780128006641
		Tissue Engineering and		
		Regenerative Medicine		
Kuang-Hua Chang	2015	e-Design. Computer-		Elsevier
		Aided Engineering		ISBN: 978-0-12-382038-9
		Design		
Jianping Geng, Weiqi Yan,	2008	Application of the		Springer
Wei Xu		Finite Element Method		ISBN 978-3-540-73763-6
		in Implant Dentistry		
Additional literature				
Gerald Brandacher	2015	The Science of		Humana Press
		Reconstructive		ISBN: 978-1-4939-2070-9
		Transplantation		
Melba Navarro, Josep A.	2011	Nanotechnology in		Humana Press
Planell		Regenerative Medicine:		ISBN: 978-1-61779-387-5
		Methods and Protocols		