

Розроблено в рамках проекту "Erasmus+ (CBHE) BioArt "Інноваційна мультидисциплінарна освітня програма зі штучних імплантів для біоінженерії для бакалаврів та магістрів" Developed in the frame of project "Erasmus+ (CBHE) BioArt "Innovative Multidisciplinary Curriculum

in Artificial Implants for Bio-Engineering BSc / MSc Degrees" (586114-EPP- 1-2017- 1-ES- EPPKA2-CBHE- JP).

DESCRIPTION/Syllabi of Curricula/Module

Short Name of the University/Country code Date (Month / Year)	VNTU / UA Sep 2019
TITLE OF THE MODULE	Code
Firmware for implants and medical devices and implants	
Medico-technical support for implants and medical devices and implants	
(discipline - Hardware and software and medical engineering support of bioengineering and medical devices and systems)	

Teacher(s)	Department
Coordinating: As. Prof. Serhii Tymchyk, Ph.D.	Dep. for Biomedical Engineering
Others:	

Study cycle	Level of the module	Type of the module
(BA/MA)	(Semester number)	(compulsary/elective)
МА	1 semester	Variable

Form of delivery	Duration	Language(s)
(theory/lab/exercises)	(weeks/months)	
Lectures, exercises, Practical training	18 weeks / 4 months	Ukrainian, English

Prerequisites								
Prerequisites:	Co-requisites (if necessary):							
Knowledge: basic knowledge of design, construction of biotechnical systems, construction of object models, processing of biomedical information Skills: none Competences: none	none							

ECTS (Credits of the module)	Total student worl hours	kload	Contact hours	Individual work hours						
4	120		54	66						
Aim of the module (course unit): competences foreseen by the study programme										
 Students should be able to: to develop a working hypothesis, to plan and set up experiments to test the hypothesis and achieve an engineering goal with the help of appropriate technologies, technical tools and tools; to create and improve the means, methods and technologies of biomedical engineering for research and development of bioengineering objects and systems of medical and technical purpose; analyze complex medical engineering and bioengineering problems and formalize them to find quantitative solutions using modern mathematical methods and information technologies; solve complex problems of biomedical engineering with application of methods of mathematics, natural sciences and engineering sciences; to study biological and technical aspects of functioning and interaction of artificial biological and biotechnical systems. 										
Learning outcomes of mo	odule (course unit)	Teach (the	ing/learning methods eory, lab, exercises)	Assessment methods (written exam, oral exam, reports)						
Knowledge: The students will obtain on the mechanisms of biomaterials with blood, equipment for blood puri	wide knowledge of interaction of technologies and fication.	Slides sugge literat writte	s, lecture notes, sted books and ure, personal reports, n papers	Written/oral exam, essays						
Skills: Conduct analysis, d application of biotec determine the structu biotechnology systems; objects in biomedical eng	evelopment and chnical systems; ire of relevant apply artificial gineering.	Lectu indivi	res, working groups, dual work	Exercise and practical reports						
Competences: Perform critical literatur subject, use the knowl exchange notions, presen	re research on the edge in practice, t the results	Work	ing groups	Exercise reports and presentations						

		C	Contac	ct woi	k hou	irs		Time and tasks for individual worl			
Themes	Lectures	Consultations	Seminars	Practical work	Laboratory work	Placements	Total contact work	Individual work	Tasks		
Methods for analysis of biosignal parameters	3						3	6	To study and understand questions: Classification of methods and their content. Histogram, skaterogram, fashion, variation span. Statistical indicators of biosignals for clinical analysis. Spectral Fourier transform: forward and reverse. Berg-Fourier conversion. Spectral characteristics of biosignals.		
Hardware and Software for Biotechnical and Medical Devices and Systems (BTMDS)	2						2	6	To study and understand questions: BTMDS Hardware and Software. General requirements. Hardware structure. Interface security. Software. Functional subsystems of hardware and software.		
ethodologies for designing BTMDS hardware and software	2						2	5	To study and understand questions: Methodologies for designing BTMDS hardware and software. Common approaches. Classification of principles of construction. Criteria for openness of the system. The only information space. External and internal design of BTMDS hardware and software. General approaches to information systems design		
The life cycle of BTMDS hardware and software	2						2	5	To study and understand the issues: BTMDS hardware and software design technologies. Design standards. Requirements for information systems design technology. The life cycle of BTMDS hardware and software. Life cycle models. Structure of project works. Classical and specialized methodologies for designing BTMDS hardware and software.		
Standalone functional- complete module	2						2	6	Explore and understand questions: The concept of a stand-alone functionally completed module. Patient electrical safety issues. Hardware protection of information. Functional-completed module structure. Functioning algorithm.		
Universal measuring channel	3						3	6	Explore and understand questions: Computer Measurement Channel (CMC). Structure and function. Modular construction principle. Requirements for CMC element base		

Structured organization of information support	2			2	5	Explore and understand questions: Structured organization of information support. Principles and classes of evidence-based medicine. Generalized block diagram of adaptive information support. Software protection of information in the BTMDS hardware
Automated system of support and provision of doctor's decisions	2			2	5	and software Explore and understand questions: Automated system of support and provision of doctor's decisions. Functional diagram of decision- making processes by a physician. General structure of the medical expert system. Information support infrastructure in medicine. Structure, organization and algorithms of
Requirements for the structure and composition of the technical component of the biotechnical system	3			3	6	functioning of automated workplaces. Explore and understand questions: Generalized structure of BTS. Determination of technical component. The composition of the technical component. Requirements for the construction materials from which the sensors are made. The principle of multisystems in the construction of BTS. BTS hardware. Functions and structure of the technical component. Software component of BTS. Training device. Peripheral subsystem. Removal of artifacts and obstacles by methods of spectral filtration, stabilization of isolines, scheme by technical methods
Determination of biological component and its characteristics in terms of physical well- being of the individual	2			2	5	Explore and understand questions: The concept of physical well-being of the individual. Information-structural model of personality of personnel. Determination of biological component. Criteria for emotional well-being. Requirements for the element base of biomedical equipment.
Methodology for designing medical expert systems	2			2	5	Explore and understand questions: Method of systematic modeling analysis to describe the subject area of the expert system. Subject area analysis. Functional and information models of the subject area. The concept of competence of experts. Methods and criteria for determining the competence of experts.
Medical and technical support BTMDS for sports medicine	2			2	6	Explore and understand questions: Requirements for medical equipment of BTMDS for sports medicine. Concept of creating computer software for medical equipment. Classification of computer programs. Sensor requirements. Features of constructive implementation of medical and technical support BTMDS for sports medicine.

Practical training			2		27		1. Study of technological possibilities
-							of laser radiation for cutting of
							biocompatible materials.
			2				2. Investigation of the technological
							process of debugging a CNC laser
							machine
			2				3. Creating models for cutting
			2				4. The process of manufacturing parts
							of artificial implants and prostheses on
							the example of different materials
							(artificial leather, plastics, metals)
			2				5. Formation of blind holes in laser
							processing
			2				6. Investigation of the accuracy of
							forming holes and contours in laser
							processing of biocompatible materials
			2				7. Investigation of the influence of
							laser cutting modes of biocompatible
							materials on the quality indicators of
							the process.
			3				8. Development of measuring channel
							for biotechnical system.
			2				9. Development of user interface for
							biotechnical system.
			3				10. Development of a system for
							measuring and transmitting bio-object
							indicators.
			3				11. Development of database structure
			2				12. Analysis of means for
							photoplethysmography and pulse
							oximetry.
Final exam							
Total	27		27		54	66	

Assessment strategy	Weight in %	Deadlines	Assessment criteria
Practical works attendance and exercise reports	25		Attendance and reports
Colloquium (theory control)	40		Test
Individual tasks	10		Essays and presentations
Final exam	25		Written/oral exam

Author	Year of issue	Title	No of periodical or volume	Place of printing. Printing house or internet link
Compulsory literature				
Krzysztof Iniewski	2017	Biological and Medical Sensor Technologies	ISBN 978-1- 138-07321-0	CRC Press
Andreas Inmann, Diana Hotgins	2013	Implantable sensor systems for medical applications	ISBN 97818456998 71	Woodhead Publishing
Yang, Guang-Zhong (Ed.)	2018	Implantable Sensors and Systems: From Theory to Practice	ISBN 978-3- 319-69748-2	Springer
Ndjountche, Tertulien	2016	Chemical Sensors and Biosensors for Medical and Biological Applications	ISBN-10: 3527288554	Wiley-VCH
Ursula E. Spichiger-Keller	1998	Digital Electronics 2: Sequential and Arithmetic Logic Circuits	Vol. 2. ISBN: 978-1-848- 21985-4	John Wiley & Sons

Kyung, CM., Yasuura, H., Liu, Y., Lin, YL. (Eds.)	2017	Smart Sensors and Systems: Innovations for Medical, Environmental, and IoT Applications	ISBN 978-3- 319-33201-7	Springer
Н.А. Кореневский, Е.П. Попечителев, С.А. Филист	1999	Проектирование электронной медицинской аппаратуры для диагностики и лечебных воздействий: монография		Курск: Курская городская типография
Additional literature				
Nordin, Margareta, and Victor Hirsch Frankel, eds	2001	Basic biomechanics of the musculoskeletal system		Lippincott Williams & Wilkins
Nilanjan Dey Jyotismita Chaki Rajesh Kumar	2019	Sensors for Health Monitoring 1st Edition	ISBN: 97801281936 17	Academic Press
George K. Knopf, Amarjeet S. Bassi	2018	Smart Biosensor Technology	ISBN 97814987744 82	CRC Press Published

This project has been funded with support from the European Commission. This publication / communication reflects the views only of the author, and the Commission cannot be held responsibility for any use which may be made of the information contained therein.