

Розроблено в рамках проекту "Erasmus+ (CBHE) BioArt "Інноваційна мультидисциплінарна освітня програма зі штучних імплантів для біоінженерії для бакалаврів та магістрів" Developed in the frame of project "Erasmus+ (CBHE) BioArt "Innovative Multidisciplinary Curriculum

in Artificial Implants for Bio-Engineering BSc / MSc Degrees" (586114-EPP- 1-2017- 1-ES- EPPKA2-CBHE- JP).

DESCRIPTION/Syllabi of Curricula/Module

Short Name of the University/Country code Date (Month / Year)	VNTU / UA Sep 2019
TITLE OF THE MODULE	Code
Basics of biosign measurements	
Sensors and sensors for measuring biomedical signals and implant diagnostics	
(discipline - Measuring converters and sensors for medical and technical systems)	

Teacher(s)	Department
Coordinating: As. Prof. Leonid Koval, Ph.D.	Dep. for Biomedical Engineering
Others:	

Study cycle	Level of the module	Type of the module		
(BA/MA)	(Semester number)	(compulsary/elective)		
Bachelor	5 th (third year) for Bachelor	Compulsory		

Form of delivery	Duration	Language(s)
(theory/lab/exercises)	(weeks/months)	
Lectures, exercises, laboratory study	18 weeks / 4 months	Ukrainian, English

Prerequisites								
Prerequisites:	Co-requisites (if necessary):							
Knowledge: basic knowledge of electronics, analog circuitry, biophysics, anatomy and physiology	none							
Skills: none								
Competences: none								

ECTS (Credits of the module)	Total student work hours	kload	Contact	hours	Individual work hours				
5,5	165		81	l	84				
Aim of the module (course unit): competences foreseen by the study programme									
of medical device - effectively use to development of b - to apply physical functioning of m - to conduct resear	y new methods and es and systems; ols and methods for biomedical products , chemical, biologic edical digital device	s, design, cal vices; nathematical ystems;	culation a methods i	designing and optimization nd testing in the n the analysis, modeling of l, natural and artificial					
Learning outcomes of mo		Teach	ing/learning n ory, lab, exer		Assessment methods (written exam, oral exam, reports)				
Knowledge: Applicants gain extensi the construction and u measuring transducers biotechnical systems and	se of electrodes, s, sensors in			and	Written/oral exam, essays				
Skills: Conduct analysis, dest electrodes, transducer biotechnical systems and	s, sensors in		es, working g lual work	groups,	Exercise and lab reports				
Competences: Perform critical literatur subject, use the knowl exchange notions, presen	edge in practice,	Worki	ng groups		Exercise reports and presentations				

	Contact work hours								Time and tasks for individual work		
Themes	Lectures	Consultations	Seminars	Practical work	Laboratory work	Placements	Total contact work	Individual work	Tasks		
Genesis of bio signals in the human body.	5						3	10	To study and understand the questions: Internal organs, tissues, skin as electrical generators. Electrical resistance of living tissues. A simplified model for the generation of EMF cells and organs. The concept of "average" common electrode and its meaning in the registration of bioelectric signals. Diagrams of leads with averaged electrode.		
Types of electrodes and converters of biosignals.	5						3	9	To study and understand the questions: Electrodes, pastes, conductors, electrode switches. Electrodes. Purpose and main characteristics. Requirements for electrodes. Pastes and their requirements. Electrode conductors and electrode switches.		
Sensors and physical phenomena of transformation of energies and physical quantities.	5						3	9	To study and understand the questions: Components of sensors. Sensor properties. Physical essence of transformation: change of physical properties, thermal energy, Seebeck effect and pyroelectric effect, Peltier effect, photovoltaic effect, photoconductivity effect, Zeeman effect, Faraday effect, Hall effect, magnetostriction, piezoelectric effect.		
Features of measurements during skin-electrode contact.	5						3	9	To study and understand the questions: Classification of subcutaneous and subcutaneous electrodes. Artifacts of electrode systems. Typical electrode designs for electrophysiological studies.		
Sensors for biochemical research.	5						3	9	To study and understand the questions: The concept of a biochemical sensor. Biochemical sensor. Clark's oxygen electrode and its electrochemical sensors. Properties of biosensors. Sensory organ biosensors. Sensor systems. Dynamic range. Sensory cell morphology. Mechanisms of sensory transduction.		
Sensors of clinical trials.	5						3	9	To study and understand the questions: Basic indicators of blood gases. Spectrophotometric oximetry. Photoplethysmography. Capnometry. Anesthesia monitoring and multi-gas analyzer. Respiratory sensors. Contact,		

· · · · · · · · · · · · · · · · · · ·	1								• .•
									resistive, pneumatic and thermistor
									sensors. Spirometric sensor of turbine
									type. PNV sensor. Thermagnetic gas
Sensors for diagnostic	5						3	10	analyzer. To study and understand the questions:
_	5						3	10	Methods and sensors of radiology.
equipment.									Computed tomography. Magnetic
									resonance imaging (MRI) methods and
									sensors. Conventional MRI. MR
									diffusion. MR perfusion. MR
									spectroscopy. MR angiography.
									Functional MRI. Temperature
									measurement using MRI. Methods and
									sensors of electroencephalography.
									Neural processes in the human brain.
									Electroencephalographic sensors. The
									concept of the channel. Types of leads.
									Electrode location indexing. Methods
									for the study of
									electroencephalograms.
Thermal biomedical	5		l				3	9	To study and understand the questions:
sensors.									Sensors and sensors of body
									temperature, internal organs and
									artificial implants. Contact thermal
									sensors. Mercury thermometers.
									Digital medical thermometers. Medical
									thermistors. Medical thermocouples.
									Contactless thermal sensors.
									Pyrometric sensors. Medical
Intelligent sensors and	5						3	10	thermographs. To study and understand the questions:
nanosensory systems.	5						3	10	General concepts about intelligent
nanosensory systems.									sensors. Integrated sensors. Sensor
									interfaces. Sensors based on optical
									waveguides with photonic-crystalline
									structure. Sensors based on carbon
									nanotubes. Nanobiosensors for Implant
									Diagnosis. Multisensor electronic odor
									and taste detectors. Trends in the
									development of sensors of physical
									quantities and methods of
									measurement in biometrics/
Practical work				2			18		Elements of electrical safety of
				-					medical equipment.
				2					Varieties and features of physical
									quantities.
				2					Electromagnetic sensors Touch sensor electronic control
				$2 \\ 2$					Sensory information in the system of
				2					coordination of living organisms
				2					One-dimensional multistage sensors
				$\frac{2}{2}$					Coordination of primary converters of
									physical quantities with computers.
				2					Measuring converters of electrical
									parameters
				2					Methods of processing information
									from nanosensors
Laboratory work					2		18		Research of electrical properties of
									biological tissues
	1	1	1	1	2	1		l I	Investigation of sensors for

				2 2 2			electrocardiography Research of biochemical converters Investigation of sensors and sensors for temperature measurement Investigation of sensors for pressure measurement
				2			Investigation of strain gauges for
				2			mechanical diagnostics of implants Investigation of sensors of measurement of air composition
				2			Sensor research for non-destructive
				2			implant control Research of intellectual sensors
Final exam				2	 		Research of interfectual sensors
	45		10	10	 01	04	
Total	45		18	18	81	84	

-

Assessment strategy	Weight in %	Deadlines	Assessment criteria
Practical works attendance and exercise reports	20		Attendance and reports
Laboratory study and lab reporst	20		Attendance and reports
Colloquium (theory control)	25		Test
Individual tasks	10		Essays and presentations
Final exam	25		Written/oral exam

Author	Year of issue	Title	No of periodical or volume	Place of printing. Printing house or internet link
Compulsory literature				
Krzysztof Iniewski	2017	Biological and Medical Sensor Technologies	ISBN 978-1- 138-07321-0	CRC Press
Ndjountche, Tertulien	2016	Chemical Sensors and Biosensors for Medical and Biological Applications	ISBN-10: 3527288554	Wiley-VCH
Ursula E. Spichiger-Keller	1998	Digital Electronics 2: Sequential and Arithmetic Logic Circuits	Vol. 2. ISBN: 978-1-848- 21985-4	John Wiley & Sons
Kyung, CM., Yasuura, H., Liu, Y., Lin, YL. (Eds.)	2017	Smart Sensors and Systems: Innovations for Medical, Environmental, and IoT Applications	ISBN 978-3- 319-33201-7	Springer
Н.А. Кореневский, Е.П. Попечителев, С.А. Филист	1999	Проектирование электронной медицинской аппаратуры для диагностики и лечебных воздействий: монография		Курск: Курская городская типография
Additional literature				
Nordin, Margareta, and Victor Hirsch Frankel, eds	2001	Basic biomechanics of the musculoskeletal system		Lippincott Williams & Wilkins
Nilanjan Dey Jyotismita	2019	Sensors for Health	ISBN:	Academic Press

Chaki Rajesh Kumar		Monitoring 1st Edition	97801281936	
			17	
George K. Knopf, Amarjeet	2018	Smart Biosensor	ISBN	CRC Press Published
S. Bassi		Technology	97814987744	
			82	

This project has been funded with support from the European Commission. This publication / communication reflects the views only of the author, and the Commission cannot be held responsibility for any use which may be made of the information contained therein.