



Розроблено в рамках проекту "Erasmus+ (CBHE) BioArt "Інноваційна мультидисциплінарна освітня програма зі штучних імплантів для біоінженерії для бакалаврів та магістрів" Developed in the frame of project "Erasmus+ (CBHE) BioArt "Innovative Multidisciplinary Curriculum in Artificial Implants for Bio-Engineering BSc / MSc Degrees" (586114-EPP- 1-2017- 1-ES- EPPKA2-CBHE- JP).

## DESCRIPTION/Syllabi of Curricula/Module

| Short Name of the University/Country code                | VNTU |
|----------------------------------------------------------|------|
| Date (Month / Year)                                      |      |
| TITLE OF THE MODULE                                      | Code |
| Modern information technologies in science and education |      |

| Teacher(s)                                      | Department                                 |
|-------------------------------------------------|--------------------------------------------|
| Coordinating: Sergey Sukhorukov, PhD<br>Others: | Machine building technology and automation |
|                                                 |                                            |

| Study cycle | Level of the module | Type of the module    |
|-------------|---------------------|-----------------------|
| (BA/MA)     | (Semester number)   | (compulsary/elective) |
| МА          | 1th semestr         | Compulsary            |

| Form of delivery       | Duration       | Language(s)   |
|------------------------|----------------|---------------|
| (theory/lab/exercises) | (weeks/months) |               |
| Lectures/lab/exercises | 12 weeks       | Ukr / English |

| Prerequisites                                                                                                                                     |                                                                |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|--|--|--|--|
| Prerequisites:                                                                                                                                    | Co-requisites (if necessary):                                  |  |  |  |  |  |  |
| Knowledge: basic knowledge of design,<br>construction of information systems and<br>biotechnical systems<br>Skills: ability to search information | Students should have skills to work in basic computer software |  |  |  |  |  |  |

| ECTS                                                                                                           | Total student wor                        | kload                          | Contact hours                                    | Individual work hours                                         |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------|--------------------------------------------------|---------------------------------------------------------------|--|--|--|--|--|
| (Credits of the module)                                                                                        | hours                                    |                                |                                                  |                                                               |  |  |  |  |  |
|                                                                                                                | 120                                      |                                |                                                  |                                                               |  |  |  |  |  |
| 4                                                                                                              | 120                                      |                                | 45                                               | /5                                                            |  |  |  |  |  |
| Aim of the module (course unit): competences foreseen by the study programme                                   |                                          |                                |                                                  |                                                               |  |  |  |  |  |
| Students should be able to:<br>- to set, research, analyze and solve complex engineering problems and problems |                                          |                                |                                                  |                                                               |  |  |  |  |  |
| biomedical engineering.<br>- to freely use<br>technical information for<br>engineering.<br>- to analyze cor    | modern methods or<br>r preparation of de | of colle<br>esign a<br>gineeri | ecting, processing and<br>nd analytical decision | d interpreting scientific and<br>s in the field of biomedical |  |  |  |  |  |
| them to find quantitat<br>technologies                                                                         | tive solutions usi                       | ing mo                         | odern mathematical                               | methods and information                                       |  |  |  |  |  |
|                                                                                                                |                                          |                                |                                                  | Assessment methods                                            |  |  |  |  |  |
| Learning outcomes of mo                                                                                        | dule (course unit)                       | Teacl<br>(th                   | ning/learning methods<br>eory, lab, exercises)   | (written exam, oral exam,<br>reports)                         |  |  |  |  |  |
| Knowledge:                                                                                                     |                                          | Slides                         | s, lecture notes,                                | Written/oral exam, essays                                     |  |  |  |  |  |
| Producers have a broad k                                                                                       | nowledge of the                          | sugge                          | ested books and                                  |                                                               |  |  |  |  |  |
| choice and use of modern                                                                                       | i information                            | literat                        | ture, personal reports,                          |                                                               |  |  |  |  |  |
| technology in conducting                                                                                       | scientific                               | writte                         | en papers                                        |                                                               |  |  |  |  |  |
| research on bloengineerin                                                                                      | lg facilities; on                        |                                |                                                  |                                                               |  |  |  |  |  |
| algebraic and differential                                                                                     | equations                                |                                |                                                  |                                                               |  |  |  |  |  |
| Skills.                                                                                                        | equations.                               | Lectu                          | res working groups                               | Exercise and laboratory                                       |  |  |  |  |  |
| Ability to program numer                                                                                       | rical solutions for                      | indivi                         | idual work                                       | reports                                                       |  |  |  |  |  |
| typical models in biomec                                                                                       | hanics. Skills                           |                                |                                                  |                                                               |  |  |  |  |  |
| related to visualizing the                                                                                     | results with a                           |                                |                                                  |                                                               |  |  |  |  |  |
| simple user interface.                                                                                         |                                          |                                |                                                  |                                                               |  |  |  |  |  |
| Ability to solve complex                                                                                       | problems in                              |                                |                                                  |                                                               |  |  |  |  |  |
| MatLab environment.                                                                                            |                                          |                                |                                                  |                                                               |  |  |  |  |  |
| Competences:                                                                                                   |                                          | Work                           | ing groups                                       | Exercise reports and                                          |  |  |  |  |  |
| To conduct a critical anal                                                                                     | ysis of the                              |                                |                                                  | presentations                                                 |  |  |  |  |  |
| literature, the results of st                                                                                  | udies of                                 |                                |                                                  |                                                               |  |  |  |  |  |
| biomechanical models of                                                                                        | joints of the                            |                                |                                                  |                                                               |  |  |  |  |  |
| body, to apply knowledge                                                                                       | e in practice, to                        |                                |                                                  |                                                               |  |  |  |  |  |
| exchange opinions and to                                                                                       | substantiate                             |                                |                                                  |                                                               |  |  |  |  |  |
| conclusions, to present re                                                                                     | suits                                    |                                |                                                  |                                                               |  |  |  |  |  |

|                                                                                                             |          |               | Conta    | ct worl        | k hour         | S          |                    | Time and tasks for individual work |                                                                                                                                                                                                                                                               |  |  |
|-------------------------------------------------------------------------------------------------------------|----------|---------------|----------|----------------|----------------|------------|--------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Themes                                                                                                      | Lectures | Consultations | Seminars | Practiacl work | aboratory work | Placements | Fotal contact work | Individual work                    | Tasks                                                                                                                                                                                                                                                         |  |  |
| Modern information<br>technologies and their<br>verification in science<br>and education                    | 1        |               |          |                |                |            | 1                  | 2                                  | To study and understand questions:<br>The concept of information<br>technology. The feasibility and<br>effectiveness of the use of informatics<br>in science and education                                                                                    |  |  |
| Criteria for<br>information<br>technology efficiency                                                        | 1        |               |          |                |                |            | 1                  | 2                                  | The general criterion for the effectiveness of information technology. Problems and criteria for choosing information technologies                                                                                                                            |  |  |
| Distributed<br>information systems<br>for wireless<br>monitoring of vital<br>functions of the human<br>body | 2        |               |          |                |                |            | 2                  | 3                                  | To study and understand questions:<br>Personal PAN technologies. Medical<br>technology for monitoring and<br>distributed data storage and<br>processing. Scheme of organization<br>of remote monitoring. Remote<br>telemonitoring using implanted<br>devices. |  |  |
| Wireless medical<br>technology                                                                              | 2        |               |          |                |                |            | 2                  | 3                                  | To study and understand questions:<br>Remote monitoring of patients.<br>Monitoring of patients' complement;<br>monitoring of asthma and COPD<br>symptoms; non-invasive wireless<br>monitoring of sugar and insulin<br>levels; monitoring of cardiac patients. |  |  |
| Introduction to<br>modeling in<br>biomechanics                                                              | 3        |               |          |                |                |            | 3                  | 5                                  | Basic information about popular<br>approaches to modeling in<br>biomechanics.                                                                                                                                                                                 |  |  |
| Structural analysis of human joints and their models.                                                       | 3        |               |          |                |                |            | 3                  | 5                                  | The main components of the joints of the human body. Examples of joint models                                                                                                                                                                                 |  |  |
| Introduction to<br>Python and Matlab<br>programming                                                         | 3        |               |          |                |                |            | 3                  | 5                                  | Code vectoring methods and graphing using Matlab. Python programming language.                                                                                                                                                                                |  |  |
| Introduction to<br>numerical methods in<br>one-dimensional space<br>in statics and dynamics                 | 3        |               |          |                |                |            | 3                  | 5                                  | Numerical methods for solving<br>algebraic and differential equations<br>are popular. Statics and speakers<br>equation for one-dimensional space                                                                                                              |  |  |
| Rigid body statics in two dimensions                                                                        | 3        |               |          |                |                |            | 3                  | 5                                  | Principles of modeling, calculation<br>and visualization of results for the<br>selected joint in the statics                                                                                                                                                  |  |  |
| Rigid body dynamics<br>in two dimensions                                                                    | 3        |               |          |                |                |            | 3                  | 5                                  | Principles of modeling, calculation<br>and visualization of results for the<br>selected joint in dynamics                                                                                                                                                     |  |  |
| Statistical processing                                                                                      | 3        |               |          |                |                |            | 3                  | 5                                  | Statistical processing of measurement                                                                                                                                                                                                                         |  |  |

Page 3 of 5

| of measurement results |    |  |        |    |    | results, principles of testing scientific<br>hypotheses and verification of<br>mathematical models                               |
|------------------------|----|--|--------|----|----|----------------------------------------------------------------------------------------------------------------------------------|
| Laboratory study       |    |  | 4      | 18 | 30 | Development and analysis of<br>wireless network technology to<br>monitor the state of physiological<br>indicators of the object. |
|                        |    |  | 4<br>5 |    |    | Creating multi-body rigid models.<br>Modeling the interaction of the<br>components of a multi-body model<br>in Matlab system .   |
|                        |    |  | 5      |    |    | Python programming in the interaction of components of a multi-body model.                                                       |
| Total                  | 27 |  | 18     | 45 | 75 |                                                                                                                                  |

| Assessment strategy                              | Weight<br>in % | Deadlines | Assessment criteria      |
|--------------------------------------------------|----------------|-----------|--------------------------|
| Laboratory works attendance and exercise reports | 30             |           | Attendance and reports   |
| Colloquium (theory control)                      | 30             |           | Test                     |
| Individual tasks                                 | 15             |           | Essays and presentations |
| Final exam                                       | 25             |           | Test                     |

| Author (s)                                                                   | Year<br>of<br>public<br>ation | Name                                                                                       | Periodical<br>number or<br>volume | Place of publication.<br>Publisher or internet link |
|------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------|
| Main sources                                                                 |                               |                                                                                            |                                   |                                                     |
| Rappaport, T. S.,<br>Heath Jr, R. W.,<br>Daniels, R. C.,<br>& Murdock, J. N. | 2015                          | Millimeter Wave<br>Wireless<br>Communications                                              | 260 p.                            | Pearson Education                                   |
| Fong, B.,<br>Fong, A. C. M.,<br>& Li, C. K.                                  | 2011                          | Telemedicine<br>technologies:<br>Information<br>technologies in medicine<br>and telehealth | ISBN: 978-0-<br>470-74569-<br>4   | John Wiley & Sons                                   |
| Злепко С. М.,<br>Тимчик С. В.,<br>Федосова І.В. та ін.                       | 2017                          | Сучасні інформаційні<br>технології в науці та<br>освіті                                    | 146                               | Вінниця: ВНТУ                                       |
| Machado M., et al.                                                           | 2010                          | Development of a<br>planar multibody<br>model of the human<br>knee joint                   | 60 (3), p.<br>459- 478            | Nonlinear Dynamics                                  |
| Гриценко В.І.,                                                               | 2015                          | Інформаційні                                                                               | 382 c.                            | К: Наук. думка                                      |

| Котова А.Б.,<br>Вовк М.І.,<br>Кіфоренко С.І.,<br>Бєлов В.М. |      | технології в біології та<br>медицині. Курс лекцій:<br>навчальний посібник                                                    |                      |                                            |
|-------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------|
| Caruntu D. I.,<br>Hefzy M. S.                               | 2004 | 3-D anatomically<br>based dynamic<br>modeling of the<br>human knee to include<br>tibiofemoral and<br>patello-femoral joints. | 126(1), p.<br>44- 53 | Journal of<br>Biomechanical<br>Engineering |
| Machado M., et al.                                          | 2012 | Compliant contact<br>force models in<br>multibody dynamics:<br>Evolution of the Hertz<br>contact theory                      | 53,99-121            | Mechanism and<br>Machine Theory            |
| Mircea Ancău                                                | 2019 | Practical Optimization<br>with MATLAB                                                                                        | 275 c.               | Cambridge Scholars<br>Publishing           |
| Additional sources                                          |      |                                                                                                                              |                      |                                            |
| Shabana A. A.                                               | 2010 | Computational<br>Dynamics                                                                                                    |                      | John Wiley & Sons                          |
| Ганжела С.І.,<br>Шлянчак С.О.                               | 2017 | Основи інформатики з<br>елементами<br>програмування та<br>сучасні інформаційні<br>технології навчання                        | 88 c.                | РВВ КДПУ ім. В.<br>Винниченка              |

This project has been funded with support from the European Commission. This publication / communication reflects the views only of the author, and the Commission cannot be held responsibility for any use which may be made of the information contained therein.