

Co-funded by the Erasmus+ Programme of the European Union

DESCRIPTION/Syllabi of Curricula/Module

Short Name of the University/Country code	PSTU Ukraine
Date (Month / Year)	June 2021
TITLE OF THE MODULE	Code
Bioceramics	

Teacher(s)	Department
Coordinating: Prof. Iefremenko V.G.	Department of Material Science and Advanced
Others: Assoc. Prof. Oleinik I.M.	Technologies

Study cycle	Level of the module	Type of the module
(BA/MA)	(Semester number)	(compulsary/elective)
MA	9th semester	Compulsary

Form of delivery	Duration	Language(s)
(theory/lab/exercises)	(weeks/months)	
Lectures, Seminars	18 weeks	Ukrainian/English

Prerequisites						
Prerequisites:	Co-requisites (if necessary):					
Knowledge:	Students should have skills to work in basic computer					
Mathematics, physics, chemistry, materials	software (eg. MS Word, MS PowerPoint)					
engineering.						
Skills:						
Analysis, calculations, basic software for calculations.						
Competences:						
None						

ECTS	Total student work	kload	Contact hours	Individual work hours
(Credits of the module)	hours			
3	90		54	36
Aim of the m	odule (course unit):	compe	tences foreseen by the s	study programme
Students should be able	to:			
- Find, analyze a	iscussion on new trond compare information on a selected t	ation o opic.	f new biomaterials;	
		T	eaching/learning	Assessment methods
Learning outcomes of mo	odule (course unit)		methods	(written exam, oral exam,
		(the	eory, lab, exercises)	reports)
Knowledge: Knowledge of basic information of various materials, processing methods. Knowledge of bioceramic materials applications in biomedicine.		Lectures		Test
Skills: Ability to analyze and compare physical and mechanical properties of different types of bio-ceramic materials. Explain the basic advantages and disadvantages of ceramic materials in biomedicine. Proper project presentation.			Seminar	Presentation
Competences: Demonstrate innovation ideas in the field of bio-ceramic materials for biomedicine and theirs applications. Select an appropriate bioceramic material for specific biomedical applications.			Lectures	Test

		Co	ontac	t wor	k hou	irs			e and tasks for dividual work
Themes	Lectures	Consultations	Seminars	Practiacl work	Laboratory work	Placements	Total contact work	Individual work	Tasks
 Introduction, basic information, composition, structure, properties, processing, application. Traditional an advanced ceramics. Bioceramics as an advanced material. Topics of presentations for students. 	4		2				6	12	Study of theoretical material, case study
2. Ceramics as a materials for bio-applications. Historical retrospective and current state. Implant areas – dental, orthopedic. Implant materials – bio polymers, bio metals, ceramic implants – porous ceramics, surface active ceramics, resorbable ceramics. Biological performance of the materials, body reaction to implant materials – corrosion, biodegradation and biocompatibility. In-vitro and in-vivo test methods of implant materials.	6		4				10	15	Study of theoretical material, case study
3. Biominerals and mineralised tissues. Biological ceramics. Structure and properties of mineralised tissues. Bone, dentin and dental enamel. Bone bonding mechanism: bonding mechanism to living tissue – interfacial bonding.	4		2				6	15	Study of theoretical material, case study
4. Biostable ceramics. Diffrent kinds of advanced ceramics: functionally graded, smart/intelligent, biomimetic, nanoceramics. Ceramic oxides: alumina and zircona. Structure, properties and use in the biomedical field.	4		2				6	15	Study of theoretical material /case study/ presentations
 5. Bioactive ceramics. Calcium phosphate-based ceramics. Bioactive glasses and glass ceramics. Bioactive glass ceramics: processing, structure, mechanical and biological properties. Surface active glasses: mechanism of surface apatite formation, compositional dependence. 	4		2				6	14	Study of theoretical material /case study/ presentations

bioactive glass ceramics coating over metals and alloys.						presentations
Importance of bioactive coatings. Hydroxyapatite coated metal implants: coating methods, characterization and properties. Bioglass and	4	2		6	13	theoretical material /case study/
Different types of ceramic fibres, composites, their properties and applications. Hydroxyapatite composites with zirconia, alumina and titania – preparation and properties. SiC whisker reinforced hydroxyapatite and bioactive glass ceramics, zirconia toughened and bioactive glass ceramics, bioglass-hydroxyapatite composites, carbon composites. 7. Bioactive coatings, basic characteristics.	6	2		8	14	study/ presentations
6. Composites: characteristic and basicparameters. Ceramics matrix composites:different types, their preparation and properties.						Study of theoretical material /case

Assessment strategy	Weight in %	Deadlines	Assessment criteria
Presentation	50	17 th week	Attendance, activity, presentation
Final test	50	17 th week	Open questions test

Author	Year of	Title	No of periodical or	Place of printing. Printing house or
	issue		volume	internet link
Compulsory literature				
Ed. by Iulian	2016	Handbook of		Springer. – 1410 p.
Vasile Antoniac		Bioceramics and		ISBN: 978-3-319-
		Biocomposites		09230-0
T. Sabu, B. Preetha, M.S.	2018	Fundamental		Woodhead Publishing
Sreekala		Biomaterials:		498 p.
		Ceramics		

T.E. San, H. Jie, A. Mamoru	2016	Nanobioceramics for Healthcare Applications	World Scientific. – 316 p.
Additional literature			
K. Gurbinder		Bioactive	Springer. – 332 p.
	2017	Glasses: Potential	
	2017	Biomaterials for	
		Future Therapy	
G. Straffelini		Friction and Wear.	Springer, Cham. – 283
	2015	Methodologies for	p.
		Design and Control	