

Co-funded by the Erasmus+ Programme of the European Union

DESCRIPTION/Syllabi of Curricula/Module

Short Name of the University/Country code	PSTU Ukraine
Date (Month / Year)	June 2021
TITLE OF THE MODULE	Code
Biomaterials	

Teacher(s)	Department
Coordinating: Assoc. Prof. Oleinik I.M., PhD	Department of Material Science and Advanced
Others:	Technologies

Study cycle	Level of the module	Type of the module
(BA/MA)	(Semester number)	(compulsary/elective)
BA	6th semester	Compulsary

Form of delivery	Duration	Language(s)
(theory/lab/exercises)	(weeks/months)	
Lectures, Seminars	18 weeks	Ukrainian/English

Prerequisites						
Prerequisites:	Co-requisites (if necessary):					
Knowledge:	Students should have skills to work in basic computer					
Materials engineering.	software (eg. MS Word, MS PowerPoint)					
Skills:						
Ability to search information, analysis.						
Competences:						
Work on presentation.						

ECTS (Credits of the module)	Total student worl hours	kload	Contact hours	Individual work hours				
3	90		54	36				
		compe						
Aim of the module (course unit): competences foreseen by the study programme Students should be able to:								
 Take part in a discussion on new trends in biomaterials; Find, analyze and compare information of new biomaterials; Make a presentation on a selected topic. 								
		T	eaching/learning	Assessment methods				
Learning outcomes of mo	odule (course unit)	<i>(</i> . .	methods	(written exam, oral exam,				
		(th	eory, lab, exercises)	reports)				
Knowledge: Knowledge of basic information of various biomaterials. Knowledge of biomaterials application in biomedicine.		Lectures		Test				
Skills: Ability to analyze and compare physical and mechanical properties of different types of biomaterials. Explain the basic advantages and disadvantages of biomaterials in biomedicine. Proper project presentation.		Seminar		Project in the form of presentation				
Competences: Demonstrate innovation ideas in the field of bio materialsfor biomedicine and theirs applications. Select an appropriate biomaterials and the technology of their processing for specific biomedical applications.			Lectures	Test				

	Contact work hours Time and tasks individual wor								
Themes		Consultations	Seminars	Practiacl work	Laboratory work	Placements	Total contact work	Individual work	Tasks
 The content, meaning and objectives of the course "Biomaterials". Field of application of biomaterials. Types of biomaterials (implants and transplants). The concept of biocompatibility. Review of the body as a target for implants. Requirements for biomaterials (chemical, mechanical and biological properties. Traditional and advanced biomaterials. Historical perspective and current state. Biomaterials as an advanced material. Topics of presentations for students. 	6		2				8	12	Study of theoretical material, case study
2. Bone tissue: structure, mechanical and biological properties. Levels of organization of bone tissue. Approaches to the replacement of human tissues and organs. Specificity of bone replacement.	4		2				8	15	Study of theoretical material, case study
 3. Classification of biomaterials. Biopolymers, biometals, bioceramics. Classification of biomaterials according to the origin. Classification of biomaterials for use. Structure of biomaterials. 	4		2				6	15	Study of theoretical material, case study
4. Metal biomaterials. Chemical and phase composition of metal biomaterials. Properties of biomaterials and implants. Titanium and its alloys as biomaterials. Shape memory alloys in medicine.	4		2				6	14	Study of theoretical material /case study/ presentations
5. Bioceramics and ceramic composites: the specificity of the receipt, test the properties, problems and modern trends. Bio-glass and glass-crystal materials. Calcium phosphate coatings on metal implants. Reaction binding materials: advantages and disadvantages compared to	4		2		2		8	14	Study of theoretical material /case study/ presentations

Total	32	12	4	48	102	
8. Final open questions test	2			2	4	
biomedical products.						
production of specialized structures and						
applications. Methods of materials processing for						presentations
methods of research materials for biomedical	4	1		6	14	study/
materials science. Physical and physico-chemical						material /case
system of methods and tests used in biomedical						theoretical
7. Methods of studying biomedical materials. The						Study of
thermoplastics and rubber-like elastomers.						presentations
(bioresorbable) polymers; high-crystalline						study/
destructible in biological media) and destructible	2	1	2	10	14	material /case
Synthetic and natural materials, bioinert (not						theoretical
6. Polymers compatible with living organisms.						Study of
(bio)polymer: current trends, prospects.						
phosphate bioceramics. Composites phosphate /						

Assessment strategy	Weight	Deadlines	Assessment criteria
	in %		
Presentation	50	18 th week	Attendance, activity, presentation
Final test	50	18 th week	Open questions test

Author	Year	Title	No of	Place of printing.
	of		periodical or	Printing house or
	issue		volume	internet link
Compulsory literature				
Edited by Cuie Wen	2020	Structural		Woodhead Publishing
		Biomaterials: A		375 p.
		Materials Science		
		Perspective		
Edited by Magnus S. Agren	2016	Wound Healing		Elsevier Science. – 197 p.
		Biomaterials. Volume		
		2: Functional		
		Biomaterials		
Maria Cristina Tanzi, Silvia	2017	Characterization of		Firstedition Publisher:
Farè		polymeric		Woodhead Publishing
		biomaterials		Language. – 500 p.

Edited by William Wagner, Shelly Sakiyama-Elbert, Guigen Zhang, Michael Yaszemski	2020	Biomaterials Science		Academic Press. – 1616 p.
Additional literature		D' (1	Γ	D 12 1 21 61 1 2 2
J. Marciniak	2018	Biomateriały		Politechniki Śląskiej Gliwice. – 471 p.
Edited by Xian Zhang	2016	Science and Principles of Biodegradable and Bioresorbable Medical Polymers: Materials and Properties		Elsevier Science 982 p.
W. Kaczorowski.	2016	Plazmowa modyfikacja biomateriałów polimerowych z wykorzystaniem powłokwęglowych		Politechniki Lodzkiey, Lodz. – 109 p.
Editors: M. Gzik	2017	Innovations in Biomedical Engineering		Springer International Publishing. – 338 p.
Velnar Tomaz, Bunc Gorazd, Klobucar Robert, Gradisnik Lidija	2016	Biomaterials and host versus graft response: a short review	vol. 16(2). – P. 82–90.	Bosnian Journal of Basic Medical Sciences.
Singh Yashpal, Arora Pooja, Arora Vipin, Jain Krati	2015	Implant biomaterials: A comprehensive review	vol. 3(1). – P. 52–7.	World Journal of Clinical Cases