

Co-funded by the Erasmus+ Programme of the European Union

DESCRIPTION/Syllabi of Curricula/Module

Short Name of the University/Country code	PSTU Ukraine
Date (Month / Year)	June 2021
TITLE OF THE MODULE	Code
Computer simulation of multi-body models	

Teacher(s)	Department					
Coordinating: Assoc. Prof. Yurii Sahirov, PhD	Department of automation and computer-					
Others:	integrated technologies					

Study cycle	Level of the module	Type of the module		
(BA/MA)	(Semester number)	(compulsary/elective)		
Masters	9th semester	Elective		

Form of delivery	Duration	Language(s)
(theory/lab/exercises)	(weeks/months)	
Lectures, Seminary	18 weeks	Ukrainian/English

Prerequisites					
Prerequisites:	Co-requisites (if necessary):				
Knowledge: Basic knowledge of physics,	Students should have skills to work in basic				
chemistry, biology, linear algebra	computer software				
Skills: ability to search information in the					
Internet.					
Competences: none					

Page 1 of 4

ECTS	Total student wor	kload	Contact hours	Individual work hours				
(Credits of the module)	hours							
4	120		32	88				
Aim of the m	odule (course unit):	compe	tences foreseen by the s	tudy programme				
Students should be able to	0:							
- Analyze the structure of	a given body joint;	;						
- Develope a multibody model of the joint;								
- Visualize the obtained r	esults.							
Learning outcomes of mo	dule (course unit)		ning/learning methods eory, lab, exercises)	Assessment methods (written exam, oral exam, reports)				
Knowledge:		Work	with the lecture	Knowledge test				
Knowledge of popular ap	proaches in	notes	as well as on the					
biomechanical modeling.		availa	able fundamental					
Knowledge of body joint	s' structure and	subje	ct literature					
methods of modeling the	ir elements.							
Knowledge of popular nu	merical methods							
for solving algebraic and	differential							
equations								
Skills:								
Ability to write complex	programs in							
Python.				Active attendance on				
Ability to program numer	rical solvers for	Lectures, project,		lectures, individual/group				
typical models in biomec	hanics.	consu	lltation	project and presentation				
Skills connected with vis	ualizing the			project and presentation				
obtained results with a sin	mple user							
interface.								
Competences:		Lectu	res, project,	Individual/group project				
Study the subject literature, exchange			lltation	and presentation				
knowledge, working in g	roup	001130		and presentation				

Themes	Contact work hours					ours	Time and tasks for individual work		
	Lectures	Consultations	Seminars	Practiacl work	Laboratory work	Placements	Fotal contact work	Individual work	Tasks
1. Introduction to modeling in biomechanics	1						1	4	Study popular approaches in modeling included in compulsory literature
2. Structural analysis of selected human joints and their models	2						2	8	Understand the basic components of human body joints on selected examples
3. Introduction to programming in Python	3				4		11	14	Study different features of numpy, methods for vectorizing the code and plotting with matplotlib
4. Introduction to numerical methods in one-dimensional dynamics and statics	3				2		7	14	
5. Introduction to PyGame library	3				2		4	20	Program a simple two-dimensional game with basic user input
6. Rigid bodydynamics in twodimensions	2				4		8	14	Model, solve and visualize a selected body joint in dynamics
7. Rigid body statics in two dimensions	2				4		7	14	Model, solve and visualize a selected body joint in statics
Total	16				16		32	88	

Assessment strategy	Weight	Deadlines	Assessment criteria
	in %		
Individual or group final project	20	3 ^{th -} 14 th	Project
referred during seminars		week	
Final exam	80		Test

Author Ye		Title	No of periodical or	Place of printing. Printing house or internet link	
	issue		volume		
Compulsory literature					
J.Z. Li	2015	3D Modeling,		Springer. – 264 p.	
		Engineering Analysis,		ISBN-10:3319059203	
		and Prototype			
		Experimentation:			
		Industrial and Research			
		Applications		~	
J. Duhovnik, I. Demsar, P.	2015	Space Modeling with		Springer, Cham. –	
Drešar		SolidWorks and NX		490 p. ISBN 978-	
	2010			3-319-03861-2.	
N. Vukašinović, J. Duhovnik	2018	Advanced CAD		Springer. –253 p. ISBN-	
		Modeling: Explicit,		10: 3030023982.	
		Parametric, Free-Form			
		CAD and Re-			
		engineering			
Additional literature					
E. Khoo, C.Hight, R.Torrens,	2017	Software Literacy:		Springer, – 114 p. ISBN-	
B.Cowie		Education and Beyond		10: 981107058X	
M. Peksen	2018	Multiphysics Modeling:		Academic Press. – 282	
		Materials, Components,		pages. ISBN 978-0-12-	
		and Systems		811824-5	
E. Gindis, R. Kaebisch	2020	Up and Running with		Academic Press,. – 862 p.	
		AutoCAD 2021, 1st		ISBN: 9780128231173.	
		Edition: 2D and 3D		ISBN: 9700120251175.	
		Drawing, Design and			
		Modeling			
M. Brand	2016	FEM-Praxis mit		Springer. – 187 p. ISBN:	
		SolidWorks. Simulation		978-3-658-09386-0.	
		durch Kontrollrechnung		778 5 858 87588 8.	
		und			
		Messungverifizieren			
M. Schabacker	2016	SolidWorks - kurz und		Springer Vieweg 140 p.	
		bündig: Grundlagen für		ISBN-10: 3658161736	
		Einsteiger (German			
		Edition)			